找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Handbook of Mathematics; I.N. Bronshtein,K.A. Semendyayev,Heiner Mühlig Book 2015Latest edition Springer-Verlag Berlin Heidelberg 2015 Ana

[复制链接]
楼主: Clinton
发表于 2025-3-28 16:08:13 | 显示全部楼层
Algebra and Discrete Mathematics,A . is the mental reflection of a fact, expressed as a sentence in a natural or artificial language. Every proposition is considered to be true or false.
发表于 2025-3-28 19:47:10 | 显示全部楼层
发表于 2025-3-29 02:04:10 | 显示全部楼层
Differential Equations,. is an equation, in which one or more variables, one or more functions of these variables, and also the derivatives of these functions with respect to these variables occur. The . of a differential equation is equal to the order of the highest occurring derivative.
发表于 2025-3-29 04:49:49 | 显示全部楼层
Calculus of Variations,A very important problem of the differential calculus is to determine for which . values the given function .(.) has extreme values. The calculus of variations discusses the following problem: For which functions has a certain integral, whose integrand depends also on the unknown function and its derivatives, an extremum value?
发表于 2025-3-29 07:56:37 | 显示全部楼层
Linear Integral Equations,An integral equation is an equation in which the unknown function appears under the integral sign. There is no universal method for solving integral equations. Solution methods and even the existence of a solution depend on the particular form of the integral equation.
发表于 2025-3-29 14:46:56 | 显示全部楼层
发表于 2025-3-29 16:58:12 | 显示全部楼层
发表于 2025-3-29 22:40:39 | 显示全部楼层
Function Theory,Analogously to real functions, complex values can be assigned to complex values, i.e., to the value . = . + i . one can assign a complex number . = . + i ., where . = .(.) and . = .(.) are real functions of two real variables. This relation is denoted by . = .(.). The function . = .(.) is a mapping from the complex . plane to the complex . plane.
发表于 2025-3-30 00:51:26 | 显示全部楼层
发表于 2025-3-30 08:04:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 18:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表