找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Handbook of Functional Equations; Stability Theory Themistocles M. Rassias Book 2014 Springer Science+Business Media, LLC 2014 Cauchy equat

[复制链接]
楼主: Corrugate
发表于 2025-3-23 09:58:07 | 显示全部楼层
https://doi.org/10.1007/978-3-642-19559-4quence of such polynomials to the solution of the equation. The second part is devoted to present several approximation methods for finding solutions of so-called Kordylewski–Kuczma functional equation. Finally, in the last one we present a stability result in the sense of Ulam–Hyers–Rassias for gen
发表于 2025-3-23 16:43:31 | 显示全部楼层
https://doi.org/10.1007/978-3-322-90142-2able).in the class of functions ϕ mapping a nonempty set . into a Banach algebra . over a field ., where . is a fixed positive integer, . for ., and the functions ., . and . for ., are given. A particular case of the equation, with . for ., is the very well-known linear equation
发表于 2025-3-23 21:44:46 | 显示全部楼层
Zuverlässigkeit im Maschinenbauns in a group when the target space of the functions is a 2-divisible commutative group. As the main result we find an approximate sequence for the unknown function satisfying the Pexider functional inequality, the limit of which is the approximate function in the Hyers–Ulam stability theorem.
发表于 2025-3-24 02:04:52 | 显示全部楼层
发表于 2025-3-24 04:11:36 | 显示全部楼层
发表于 2025-3-24 07:09:46 | 显示全部楼层
发表于 2025-3-24 11:38:42 | 显示全部楼层
发表于 2025-3-24 15:31:11 | 显示全部楼层
On Stability of the Linear and Polynomial Functional Equations in Single Variable,able).in the class of functions ϕ mapping a nonempty set . into a Banach algebra . over a field ., where . is a fixed positive integer, . for ., and the functions ., . and . for ., are given. A particular case of the equation, with . for ., is the very well-known linear equation
发表于 2025-3-24 21:07:31 | 显示全部楼层
发表于 2025-3-25 02:56:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 00:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表