找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Handbook of Dynamic Data Driven Applications Systems; Volume 1 Erik P. Blasch,Frederica Darema,Alex J. Aved Book 2022Latest edition This is

[复制链接]
查看: 49258|回复: 55
发表于 2025-3-21 17:58:38 | 显示全部楼层 |阅读模式
书目名称Handbook of Dynamic Data Driven Applications Systems
副标题Volume 1
编辑Erik P. Blasch,Frederica Darema,Alex J. Aved
视频video
概述Peer-reviewed contributions that focus on the use of DDDAS for various applications into one volume.Contributions from leading experts in various domains to reflect individual applications to the more
图书封面Titlebook: Handbook of Dynamic Data Driven Applications Systems; Volume 1 Erik P. Blasch,Frederica Darema,Alex J. Aved Book 2022Latest edition This is
描述.The Handbook of Dynamic Data Driven Applications Systems establishes an authoritative reference of DDDAS, pioneered by Dr. Darema and the co-authors for researchers and practitioners developing DDDAS technologies...Beginning with general concepts and history of the paradigm, the text provides 32 chapters by leading experts in ten application areas to enable an accurate understanding, analysis, and control of complex systems; be they natural, engineered, or societal:..The authors explain how DDDAS unifies the computational and instrumentation aspects of an application system, extends the notion of Smart Computing to span from the high-end to the real-time data acquisition and control, and manages Big Data exploitation with high-dimensional model coordination...The Dynamically Data Driven Applications Systems (DDDAS) paradigm inspired research regarding the prediction of severe storms.  Specifically, the DDDAS concept allows atmospheric observing systems, computer forecast models, and cyberinfrastructure to dynamically configure themselves in optimal ways in direct response to current or anticipated weather conditions.  In so doing, all resources are used in an optimal manner to max
出版日期Book 2022Latest edition
关键词DDDAS; Controls; Instrumentation; Big Data; High performance computing; Cyber physical systems; UAVs; data
版次2
doihttps://doi.org/10.1007/978-3-030-74568-4
isbn_softcover978-3-030-74570-7
isbn_ebook978-3-030-74568-4
copyrightThis is a U.S. government work and not under copyright protection in the U.S.; foreign copyright pro
The information of publication is updating

书目名称Handbook of Dynamic Data Driven Applications Systems影响因子(影响力)




书目名称Handbook of Dynamic Data Driven Applications Systems影响因子(影响力)学科排名




书目名称Handbook of Dynamic Data Driven Applications Systems网络公开度




书目名称Handbook of Dynamic Data Driven Applications Systems网络公开度学科排名




书目名称Handbook of Dynamic Data Driven Applications Systems被引频次




书目名称Handbook of Dynamic Data Driven Applications Systems被引频次学科排名




书目名称Handbook of Dynamic Data Driven Applications Systems年度引用




书目名称Handbook of Dynamic Data Driven Applications Systems年度引用学科排名




书目名称Handbook of Dynamic Data Driven Applications Systems读者反馈




书目名称Handbook of Dynamic Data Driven Applications Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:30:44 | 显示全部楼层
https://doi.org/10.1007/978-3-663-07484-7ike and respiratory illness (from 2008 to 2010) from the Indiana Public Health Emergency Surveillance System. The DPPF develops a dynamic data-driven applications system (DDDAS) methodology for disease outbreak detection. Numerical results show that our model significantly improves the outbreak detection performance in real data analysis.
发表于 2025-3-22 03:14:56 | 显示全部楼层
Dynamic Space-Time Model for Syndromic Surveillance with Particle Filters and Dirichlet Processike and respiratory illness (from 2008 to 2010) from the Indiana Public Health Emergency Surveillance System. The DPPF develops a dynamic data-driven applications system (DDDAS) methodology for disease outbreak detection. Numerical results show that our model significantly improves the outbreak detection performance in real data analysis.
发表于 2025-3-22 08:25:16 | 显示全部楼层
https://doi.org/10.1007/978-3-322-88462-6the use of tractable variational information theoretic inference in estimation that also requires minimal resampling and allows for gradient-based inferences for non-Gaussian high-dimensional problems with few samples.
发表于 2025-3-22 09:31:17 | 显示全部楼层
发表于 2025-3-22 13:48:30 | 显示全部楼层
发表于 2025-3-22 19:57:32 | 显示全部楼层
发表于 2025-3-22 21:53:54 | 显示全部楼层
els, and cyberinfrastructure to dynamically configure themselves in optimal ways in direct response to current or anticipated weather conditions.  In so doing, all resources are used in an optimal manner to max978-3-030-74570-7978-3-030-74568-4
发表于 2025-3-23 04:08:11 | 显示全部楼层
发表于 2025-3-23 07:59:36 | 显示全部楼层
Dynamic Data-Driven Adaptive Observations in Data Assimilation for Multi-scale Systems from the expected uncertainty minimization criterion, for dynamic sensor selection in filtering problems. It is compared with a strategy based on finite-time Lyapunov exponents of the dynamical system, which provide insight into error growth due to signal dynamics.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 00:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表