找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Handbook of Computational Statistics; Concepts and Methods James E. Gentle,Wolfgang Karl Härdle,Yuichi Mori Book 2012Latest edition Springe

[复制链接]
查看: 28824|回复: 60
发表于 2025-3-21 17:27:47 | 显示全部楼层 |阅读模式
书目名称Handbook of Computational Statistics
副标题Concepts and Methods
编辑James E. Gentle,Wolfgang Karl Härdle,Yuichi Mori
视频video
概述Up-to-date coverage of the topic.First-rate authors contribute to the volume.The editors have been involved in this research area from the beginning and have all given substantial imput to its develop
丛书名称Springer Handbooks of Computational Statistics
图书封面Titlebook: Handbook of Computational Statistics; Concepts and Methods James E. Gentle,Wolfgang Karl Härdle,Yuichi Mori Book 2012Latest edition Springe
描述The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Las
出版日期Book 2012Latest edition
关键词Bioinformatics; Computational Statistics; EM algorithm; Functional MRI; MCMC; Network Intrusion Detection
版次2
doihttps://doi.org/10.1007/978-3-642-21551-3
isbn_softcover978-3-662-51765-9
isbn_ebook978-3-642-21551-3Series ISSN 2197-9790 Series E-ISSN 2197-9804
issn_series 2197-9790
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

书目名称Handbook of Computational Statistics影响因子(影响力)




书目名称Handbook of Computational Statistics影响因子(影响力)学科排名




书目名称Handbook of Computational Statistics网络公开度




书目名称Handbook of Computational Statistics网络公开度学科排名




书目名称Handbook of Computational Statistics被引频次




书目名称Handbook of Computational Statistics被引频次学科排名




书目名称Handbook of Computational Statistics年度引用




书目名称Handbook of Computational Statistics年度引用学科排名




书目名称Handbook of Computational Statistics读者反馈




书目名称Handbook of Computational Statistics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:20:40 | 显示全部楼层
发表于 2025-3-22 01:55:29 | 显示全部楼层
https://doi.org/10.1007/978-1-4613-1749-496). MCMC methods have proved useful in practically all aspects of Bayesian inference, for example, in the context of prediction problems and in the computation of quantities, such as the marginal likelihood, that are used for comparing competing Bayesian models.
发表于 2025-3-22 05:08:25 | 显示全部楼层
发表于 2025-3-22 10:41:56 | 显示全部楼层
Markov Chain Monte Carlo Technology96). MCMC methods have proved useful in practically all aspects of Bayesian inference, for example, in the context of prediction problems and in the computation of quantities, such as the marginal likelihood, that are used for comparing competing Bayesian models.
发表于 2025-3-22 14:10:26 | 显示全部楼层
发表于 2025-3-22 18:47:31 | 显示全部楼层
https://doi.org/10.1007/978-3-642-21551-3Bioinformatics; Computational Statistics; EM algorithm; Functional MRI; MCMC; Network Intrusion Detection
发表于 2025-3-22 22:12:22 | 显示全部楼层
发表于 2025-3-23 04:21:30 | 显示全部楼层
发表于 2025-3-23 09:34:07 | 显示全部楼层
Yoshio Yotsuyanagi,Daniel Szöllösiression reduces to solving a system of linear equations, see Chap. III.8. Theprincipal components method is based on finding eigenvalues and eigenvectors of a matrix, see Chap. III.6. Nonlinear optimization methods such as Newton’s method often employ the inversion of a Hessian matrix. In all these cases, we neednumerical linear algebra.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 10:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表