找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Handbook of Big Data Privacy; Kim-Kwang Raymond Choo,Ali Dehghantanha Book 2020 Springer Nature Switzerland AG 2020 cyber threat.cyber sec

[复制链接]
查看: 14334|回复: 60
发表于 2025-3-21 19:11:07 | 显示全部楼层 |阅读模式
书目名称Handbook of Big Data Privacy
编辑Kim-Kwang Raymond Choo,Ali Dehghantanha
视频video
概述One of the first handbooks that provides interdisciplinary coverage of security, privacy and forensics knowledge in the field of big data and IoT security, privacy, and forensics.Presents an up-to-dat
图书封面Titlebook: Handbook of Big Data Privacy;  Kim-Kwang Raymond Choo,Ali Dehghantanha Book 2020 Springer Nature Switzerland AG 2020 cyber threat.cyber sec
描述This handbook provides comprehensive knowledge and includes an overview of the current state-of-the-art of Big Data Privacy, with chapters written by international world leaders from academia and industry working in this field. The first part of this book offers a review of security challenges in critical infrastructure and offers methods that utilize acritical intelligence (AI) techniques to overcome those issues. It then focuses on big data security and privacy issues in relation to developments in the Industry 4.0. Internet of Things (IoT) devices are becoming a major source of security and privacy concern in big data platforms. Multiple solutions that leverage machine learning for addressing security and privacy issues in IoT environments are also discussed this handbook. .The second part of this handbook is focused on privacy and security issues in different layers of big data systems. It discusses about methods for evaluating security and privacy of big data systems on network, application and physical layers. This handbook elaborates on existing methods to use data analytic and AI techniques at different layers of big data platforms to identify privacy and security attacks. 
出版日期Book 2020
关键词cyber threat; cyber security; privacy; big data; threat intelligence; machine learning; cyber forensics; in
版次1
doihttps://doi.org/10.1007/978-3-030-38557-6
isbn_softcover978-3-030-38559-0
isbn_ebook978-3-030-38557-6
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Handbook of Big Data Privacy影响因子(影响力)




书目名称Handbook of Big Data Privacy影响因子(影响力)学科排名




书目名称Handbook of Big Data Privacy网络公开度




书目名称Handbook of Big Data Privacy网络公开度学科排名




书目名称Handbook of Big Data Privacy被引频次




书目名称Handbook of Big Data Privacy被引频次学科排名




书目名称Handbook of Big Data Privacy年度引用




书目名称Handbook of Big Data Privacy年度引用学科排名




书目名称Handbook of Big Data Privacy读者反馈




书目名称Handbook of Big Data Privacy读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:58:42 | 显示全部楼层
发表于 2025-3-22 00:57:05 | 显示全部楼层
Darmerkrankungen bei HIV-Infektion und Aidsel of the network at early design phases. Through five different case studies, we have demonstrated the application of this scheme. This chapter explain the way this scheme may be used to evaluate and assess the security in different scenarios. These case studies also help in endorsing the usability
发表于 2025-3-22 05:05:11 | 显示全部楼层
发表于 2025-3-22 11:44:58 | 显示全部楼层
Coronarinsuffizienz und Herzinfarktrity program that should be used to achieve this goal, the types of crime and cyber wars are known and adopted strategies to overcome them in FinTech-banking as big data media. Big data, both in the real world and in cyberspace, is the most significant challenges in managing large volumes of informa
发表于 2025-3-22 15:28:32 | 显示全部楼层
https://doi.org/10.1007/978-3-662-10479-8ster to learn local metrics within each cluster to apply a robust nearest neighbor classifier. The empirical results on NSL-KDD dataset demonstrate that our model outperforms previous models designed to detect two major harmful attacks (U2R and R2L).
发表于 2025-3-22 19:59:29 | 显示全部楼层
发表于 2025-3-22 23:39:51 | 显示全部楼层
发表于 2025-3-23 01:29:31 | 显示全部楼层
发表于 2025-3-23 09:32:06 | 显示全部楼层
network, application and physical layers. This handbook elaborates on existing methods to use data analytic and AI techniques at different layers of big data platforms to identify privacy and security attacks. 978-3-030-38559-0978-3-030-38557-6
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 10:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表