找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Handbook of Big Data Analytics; Wolfgang Karl Härdle,Henry Horng-Shing Lu,Xiaotong Book 2018 Springer International Publishing AG, part of

[复制链接]
楼主: CULT
发表于 2025-3-25 07:12:34 | 显示全部楼层
发表于 2025-3-25 10:13:12 | 显示全部楼层
发表于 2025-3-25 14:02:14 | 显示全部楼层
发表于 2025-3-25 19:43:49 | 显示全部楼层
High-Dimensional Classificationmputation. In the past 15 years, several popular high-dimensional classifiers have been developed and studied in the literature. These classifiers can be roughly divided into two categories: sparse penalized margin-based classifiers and sparse discriminant analysis. In this chapter we give a compreh
发表于 2025-3-26 00:00:26 | 显示全部楼层
Analysis of High-Dimensional Regression Models Using Orthogonal Greedy AlgorithmsA) in high-dimensional sparse regression models with independent observations. In particular, when the regression coefficients are absolutely summable, the conditional mean squared prediction error and the empirical norm of OGA derived by Ing and Lai (Stat Sin 21:1473–1513, 2011) are introduced. We
发表于 2025-3-26 03:19:55 | 显示全部楼层
发表于 2025-3-26 08:08:54 | 显示全部楼层
Inverse Modeling: A Strategy to Cope with Non-linearityenges in modern data analysis. Most forward regression modeling procedures are seriously compromised due to the curse of dimension. In this chapter, we show that the inverse modeling idea, originated from the . (SIR), can help us detect nonlinear relations effectively, and survey a few recent advanc
发表于 2025-3-26 10:02:56 | 显示全部楼层
发表于 2025-3-26 15:08:39 | 显示全部楼层
Bridging Density Functional Theory and Big Data Analytics with Applicationsregime. By technically mapping the data space into physically meaningful bases, the chapter provides a simple procedure to formulate global Lagrangian and Hamiltonian density functionals to circumvent the emerging challenges on large-scale data analyses. Then, the informative features of mixed datas
发表于 2025-3-26 19:12:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 23:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表