找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Handbook for Automatic Computation; Volume II: Linear Al J. H. Wilkinson,C. Reinsch,F. L. Bauer,A. S. House Book 1971 Springer-Verlag Berli

[复制链接]
楼主: 民俗学
发表于 2025-3-23 12:05:10 | 显示全部楼层
https://doi.org/10.1007/978-0-387-28822-2If . is a non-singular matrix then, in general, it can be factorized in the form . = ., where . is lower-triangular and . is upper-triangular. The factorization, when it exists, is unique to within a non-singular diagonal multiplying factor.
发表于 2025-3-23 15:55:45 | 显示全部楼层
发表于 2025-3-23 21:46:43 | 显示全部楼层
https://doi.org/10.1007/978-3-319-41585-7Let . be a matrix of . rows and . columns, .≦.. If and only if the columns are linearly independent, then for any vector . there exists a unique vector . minimizing the Euclidean norm of ..
发表于 2025-3-24 00:40:11 | 显示全部楼层
发表于 2025-3-24 02:43:32 | 显示全部楼层
发表于 2025-3-24 07:59:42 | 显示全部楼层
https://doi.org/10.5822/978-1-61091-205-1In [1] an algorithm was described for carrying out the . algorithm for a real symmetric matrix using shifts of origin. This algorithm is described by the relations.where .. is orthogonal, .. is lower triangular and .. is the shift of origin determined from the leading 2×2 matrix of ...
发表于 2025-3-24 11:21:45 | 显示全部楼层
发表于 2025-3-24 15:44:01 | 显示全部楼层
Symmetric Decomposition of a Positive Definite MatrixThe methods are based on the following theorem due to . [.].
发表于 2025-3-24 21:26:37 | 显示全部楼层
发表于 2025-3-25 02:18:59 | 显示全部楼层
Symmetric Decomposition of Positive Definite Band MatricesThe method is based on the following theorem. If . is a positive definite matrix of band form such that.then there exists a real non-singular lower triangular matrix . such that
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 03:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表