找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hamiltonian Systems with Three or More Degrees of Freedom; Carles Simó Book 1999 Springer Science+Business Media Dordrecht 1999 Kolmogorov

[复制链接]
查看: 50926|回复: 58
发表于 2025-3-21 17:01:29 | 显示全部楼层 |阅读模式
书目名称Hamiltonian Systems with Three or More Degrees of Freedom
编辑Carles Simó
视频videohttp://file.papertrans.cn/421/420641/420641.mp4
丛书名称Nato Science Series C:
图书封面Titlebook: Hamiltonian Systems with Three or More Degrees of Freedom;  Carles Simó Book 1999 Springer Science+Business Media Dordrecht 1999 Kolmogorov
描述A survey of current knowledge about Hamiltonian systems withthree or more degrees of freedom and related topics. The Hamiltoniansystems appearing in most of the applications are non-integrable.Hence methods to prove non-integrability results are presented and thedifferent meaning attributed to non-integrability are discussed. Forsystems near an integrable one, it can be shown that, under suitableconditions, some parts of the integrable structure, most of theinvariant tori, survive. Many of the papers discuss near-integrablesystems. .From a topological point of view, some singularities must appear indifferent problems, either caustics, geodesics, moving wavefronts,etc. This is also related to singularities in the projections ofinvariant objects, and can be used as a signature of these objects.Hyperbolic dynamics appear as a source on unpredictable behaviour andseveral mechanisms of hyperbolicity are presented. The destruction oftori leads to Aubrey-Mather objects, and this is touched on for arelated class of systems. Examples without periodic orbits areconstructed, against a classical conjecture. .Other topics concern higher dimensional systems, either finite(networks and localised
出版日期Book 1999
关键词Kolmogorov–Arnold–Moser theorem; Signatur; degrees of freedom; dynamics; mechanics; partial differential
版次1
doihttps://doi.org/10.1007/978-94-011-4673-9
isbn_softcover978-94-010-5968-8
isbn_ebook978-94-011-4673-9Series ISSN 1389-2185
issn_series 1389-2185
copyrightSpringer Science+Business Media Dordrecht 1999
The information of publication is updating

书目名称Hamiltonian Systems with Three or More Degrees of Freedom影响因子(影响力)




书目名称Hamiltonian Systems with Three or More Degrees of Freedom影响因子(影响力)学科排名




书目名称Hamiltonian Systems with Three or More Degrees of Freedom网络公开度




书目名称Hamiltonian Systems with Three or More Degrees of Freedom网络公开度学科排名




书目名称Hamiltonian Systems with Three or More Degrees of Freedom被引频次




书目名称Hamiltonian Systems with Three or More Degrees of Freedom被引频次学科排名




书目名称Hamiltonian Systems with Three or More Degrees of Freedom年度引用




书目名称Hamiltonian Systems with Three or More Degrees of Freedom年度引用学科排名




书目名称Hamiltonian Systems with Three or More Degrees of Freedom读者反馈




书目名称Hamiltonian Systems with Three or More Degrees of Freedom读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:57:03 | 显示全部楼层
发表于 2025-3-22 03:04:36 | 显示全部楼层
发表于 2025-3-22 06:52:06 | 显示全部楼层
发表于 2025-3-22 09:13:09 | 显示全部楼层
https://doi.org/10.1007/978-94-015-9692-3arameter. A careful analysis of the accumulation of the small divisors shows that it can be controlled geometrically. As a consequence, the proof of convergence is based essentially on Cauchy’s majorants method, with no use of the so called quadratic method. A short comparison with Lindstedt’s series is included.
发表于 2025-3-22 15:31:54 | 显示全部楼层
发表于 2025-3-22 19:26:36 | 显示全部楼层
Isao Tanaka,Nobuhiro Tsuji,Haruyuki Inuif several planets. For most of the simple commensurabilities, chaotic motion leads to high eccentricities which lead to planet crossing, which lead to removal of the asteroid. For the 2:1 commensurability, the result is not so clear and still controversial.
发表于 2025-3-23 00:20:01 | 显示全部楼层
发表于 2025-3-23 03:09:44 | 显示全部楼层
发表于 2025-3-23 08:06:12 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-4 12:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表