找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hamiltonian Methods in the Theory of Solitons; Ludwig D. Faddeev,Leon A. Takhtajan Book 2007 Springer-Verlag Berlin Heidelberg 2007 Invers

[复制链接]
查看: 21546|回复: 41
发表于 2025-3-21 19:51:05 | 显示全部楼层 |阅读模式
书目名称Hamiltonian Methods in the Theory of Solitons
编辑Ludwig D. Faddeev,Leon A. Takhtajan
视频video
概述Includes supplementary material:
丛书名称Classics in Mathematics
图书封面Titlebook: Hamiltonian Methods in the Theory of Solitons;  Ludwig D. Faddeev,Leon A. Takhtajan Book 2007 Springer-Verlag Berlin Heidelberg 2007 Invers
描述This book presents the foundations of the inverse scattering method and its applications to the theory of solitons in such a form as we understand it in Leningrad. The concept of solitonwas introduced by Kruskal and Zabusky in 1965. A soliton (a solitary wave) is a localized particle-like solution of a nonlinear equation which describes excitations of finite energy and exhibits several characteristic features: propagation does not destroy the profile of a solitary wave; the interaction of several solitary waves amounts to their elastic scat­ tering, so that their total number and shape are preserved. Occasionally, the concept of the soliton is treated in a more general sense as a localized solu­ tion of finite energy. At present this concept is widely spread due to its universality and the abundance of applications in the analysis of various processes in nonlinear media. The inverse scattering method which is the mathematical basis of soliton theory has developed into a powerful tool of mathematical physics for studying nonlinear partial differential equations, almost as vigoraus as the Fourier transform. The book is based on the Hamiltonian interpretation of the method, hence the
出版日期Book 2007
关键词Inverse scattering method; Lie-Algebra; Riemann problem; Schrödinger equations; curvature; integrable Evo
版次1
doihttps://doi.org/10.1007/978-3-540-69969-9
isbn_softcover978-3-540-69843-2
isbn_ebook978-3-540-69969-9Series ISSN 1431-0821 Series E-ISSN 2512-5257
issn_series 1431-0821
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

书目名称Hamiltonian Methods in the Theory of Solitons影响因子(影响力)




书目名称Hamiltonian Methods in the Theory of Solitons影响因子(影响力)学科排名




书目名称Hamiltonian Methods in the Theory of Solitons网络公开度




书目名称Hamiltonian Methods in the Theory of Solitons网络公开度学科排名




书目名称Hamiltonian Methods in the Theory of Solitons被引频次




书目名称Hamiltonian Methods in the Theory of Solitons被引频次学科排名




书目名称Hamiltonian Methods in the Theory of Solitons年度引用




书目名称Hamiltonian Methods in the Theory of Solitons年度引用学科排名




书目名称Hamiltonian Methods in the Theory of Solitons读者反馈




书目名称Hamiltonian Methods in the Theory of Solitons读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:01:49 | 显示全部楼层
发表于 2025-3-22 01:18:15 | 显示全部楼层
https://doi.org/10.1007/978-3-540-69969-9Inverse scattering method; Lie-Algebra; Riemann problem; Schrödinger equations; curvature; integrable Evo
发表于 2025-3-22 07:49:38 | 显示全部楼层
发表于 2025-3-22 10:30:33 | 显示全部楼层
发表于 2025-3-22 14:58:58 | 显示全部楼层
https://doi.org/10.1007/978-3-662-03243-5The dynamical system to be considered is generated by the nonlinear equation . with the initial condition ..
发表于 2025-3-22 19:24:04 | 显示全部楼层
Zero Curvature RepresentationThe dynamical system to be considered is generated by the nonlinear equation . with the initial condition ..
发表于 2025-3-22 22:33:43 | 显示全部楼层
发表于 2025-3-23 01:36:53 | 显示全部楼层
Lie-Algebraic Approach to the Classification and Analysis of Integrable Modelsncipal entities of the inverse scattering method and its Hamiltonian interpretation were the auxiliary linear problem operator . = . − .(.) and the fundamental Poisson brackets for .(.) involving the r-matrix. Similar objects were introduced for lattice models. We will show that these notions have a simple geometric interpretation.
发表于 2025-3-23 09:04:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 20:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表