找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hamiltonian Group Actions and Equivariant Cohomology; Shubham Dwivedi,Jonathan Herman,Theo van den Hurk Book 2019 The Author(s), under exc

[复制链接]
楼主: Insularity
发表于 2025-3-23 13:03:33 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-4646-6s that around any point of a symplectic manifold, there is a chart for which the symplectic form has a particularly nice form. In this section, we give a proof of an equivariant version of the theorem and look at some corollaries. We direct the reader to [.] or Sect. 22 of [.] for more details.
发表于 2025-3-23 16:26:59 | 显示全部楼层
发表于 2025-3-23 19:18:38 | 显示全部楼层
发表于 2025-3-24 00:51:45 | 显示全部楼层
The Physics Behind Semiconductor Technologyase space”, parametrizing position and momentum) is replaced by a vector space with an inner product; in other words, a Hilbert space (the “space of wave functions”). Functions on the manifold (“observables”) are replaced by endomorphisms of the vector space.
发表于 2025-3-24 03:33:02 | 显示全部楼层
发表于 2025-3-24 07:32:24 | 显示全部楼层
The Symplectic Structure on Coadjoint Orbits,irillov–Kostant–Souriau form). An example of an orbit of the adjoint action is the two-sphere, which is an orbit of the action of the rotation group .(3) on its Lie algebra .. Background information on Lie groups may be found in Appendix.
发表于 2025-3-24 11:09:08 | 显示全部楼层
,The Duistermaat–Heckman Theorem,ich comes from the original article [.]) describes how the Liouville measure of a symplectic quotient varies. The second describes an oscillatory integral over a symplectic manifold equipped with a Hamiltonian group action and can be characterized by the slogan “Stationary phase is exact”.
发表于 2025-3-24 16:58:33 | 显示全部楼层
Geometric Quantization,ase space”, parametrizing position and momentum) is replaced by a vector space with an inner product; in other words, a Hilbert space (the “space of wave functions”). Functions on the manifold (“observables”) are replaced by endomorphisms of the vector space.
发表于 2025-3-24 22:01:45 | 显示全部楼层
发表于 2025-3-25 02:59:25 | 显示全部楼层
Hamiltonian Group Actions and Equivariant Cohomology978-3-030-27227-2Series ISSN 2191-8198 Series E-ISSN 2191-8201
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 15:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表