找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hamiltonian Cycle Problem and Markov Chains; Vivek S. Borkar,Vladimir Ejov,Giang T. Nguyen Book 2012 Springer Science+Business Media, LLC

[复制链接]
楼主: risky-drinking
发表于 2025-3-23 11:10:04 | 显示全部楼层
发表于 2025-3-23 15:44:30 | 显示全部楼层
Markov Decision Processesparticular, in the context of this book, we observe that in any given graph Hamiltonian cycles (if any) correspond to a family of spanning subgraphs inducing very special Markov chains whose probability transition matrices are a subset of permutation matrices possessing only a single ergodic class.
发表于 2025-3-23 21:45:28 | 显示全部楼层
发表于 2025-3-23 22:33:56 | 显示全部楼层
发表于 2025-3-24 02:37:40 | 显示全部楼层
Linear Programming Based Algorithmsearned that a simple cut of the above domain yields a polyhedron the extreme points of which correspond to only two possible types: Hamiltonian cycles and convex combinations of short and noose cycles. These properties, naturally, suggest certain algorithmic approaches to searching for Hamiltonian cycles.
发表于 2025-3-24 07:25:27 | 显示全部楼层
Self-similar Structure and Hamiltonicityexample, Meringer [77]). This offers an opportunity to study the whole populations of these graphs with the goal of understanding the special nature of those members of that population that correspond to non-Hamiltonian graphs.
发表于 2025-3-24 13:02:15 | 显示全部楼层
发表于 2025-3-24 16:13:02 | 显示全部楼层
Graph Enumerationa given connectivity. In comparison to labeled cubic graphs, the numeration of unlabeled cubic graphs is a significantly more challenging problem [102]. In 1977, Robinson [88] presented a method to count unlabeled cubic graphs.
发表于 2025-3-24 23:05:31 | 显示全部楼层
发表于 2025-3-24 23:57:18 | 显示全部楼层
https://doi.org/10.1007/978-1-349-27476-5 recent and comprehensive treatment on probabilistic methods). Similarly, connections between Markov chains and graph theory have long been made (see Harary [57]). Our contribution here is to apply properties of Markov chains to the Hamiltonian cycle problem and to take advantage of the still emergi
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 19:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表