找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hamiltonian Chaos Beyond the KAM Theory; Dedicated to George Albert C. J. Luo,Valentin Afraimovich Book 2010 Springer-Verlag Berlin Heidel

[复制链接]
查看: 53074|回复: 35
发表于 2025-3-21 16:53:34 | 显示全部楼层 |阅读模式
书目名称Hamiltonian Chaos Beyond the KAM Theory
副标题Dedicated to George
编辑Albert C. J. Luo,Valentin Afraimovich
视频videohttp://file.papertrans.cn/421/420627/420627.mp4
概述Explains a theory on resonant mechanism of Hamiltonian chaos in stochastic layers and webs.Develops newest methods and ideas on Hamiltonian chaos in nonlinear Hamiltonian systems.Direct applies Hamilt
丛书名称Nonlinear Physical Science
图书封面Titlebook: Hamiltonian Chaos Beyond the KAM Theory; Dedicated to George  Albert C. J. Luo,Valentin Afraimovich Book 2010 Springer-Verlag Berlin Heidel
描述.“Hamiltonian Chaos Beyond the KAM Theory: Dedicated to George M. Zaslavsky (1935—2008)” covers the recent developments and advances in the theory and application of Hamiltonian chaos in nonlinear Hamiltonian systems. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. Each chapter in this book was written by well-established scientists in the field of nonlinear Hamiltonian systems. The development presented in this book goes beyond the KAM theory, and the onset and disappearance of chaos in the stochastic and resonant layers of nonlinear Hamiltonian systems are predicted analytically, instead of qualitatively. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico..
出版日期Book 2010
关键词Dynamical systems; George Zaslavsky; HEP; Hamiltonian chaos; KAM Theory; NPS; Nonlinear Hamiltonian system
版次1
doihttps://doi.org/10.1007/978-3-642-12718-2
isbn_ebook978-3-642-12718-2Series ISSN 1867-8440 Series E-ISSN 1867-8459
issn_series 1867-8440
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Hamiltonian Chaos Beyond the KAM Theory影响因子(影响力)




书目名称Hamiltonian Chaos Beyond the KAM Theory影响因子(影响力)学科排名




书目名称Hamiltonian Chaos Beyond the KAM Theory网络公开度




书目名称Hamiltonian Chaos Beyond the KAM Theory网络公开度学科排名




书目名称Hamiltonian Chaos Beyond the KAM Theory被引频次




书目名称Hamiltonian Chaos Beyond the KAM Theory被引频次学科排名




书目名称Hamiltonian Chaos Beyond the KAM Theory年度引用




书目名称Hamiltonian Chaos Beyond the KAM Theory年度引用学科排名




书目名称Hamiltonian Chaos Beyond the KAM Theory读者反馈




书目名称Hamiltonian Chaos Beyond the KAM Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:35:03 | 显示全部楼层
A New Approach to the Treatment of Separatrix Chaos and Its Applications,haos is most developed when the perturbation frequency lies in the logarithmically small or moderate ranges: this corresponds to the involvement of resonance dynamics into the separatrix chaos. We develop a method matching the discrete chaotic dynamics of the separatrix map and the continuous regula
发表于 2025-3-22 01:05:17 | 显示全部楼层
发表于 2025-3-22 07:41:09 | 显示全部楼层
发表于 2025-3-22 08:55:54 | 显示全部楼层
发表于 2025-3-22 15:53:47 | 显示全部楼层
发表于 2025-3-22 20:49:12 | 显示全部楼层
发表于 2025-3-23 00:09:50 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-3044-1haos is most developed when the perturbation frequency lies in the logarithmically small or moderate ranges: this corresponds to the involvement of resonance dynamics into the separatrix chaos. We develop a method matching the discrete chaotic dynamics of the separatrix map and the continuous regula
发表于 2025-3-23 05:09:51 | 显示全部楼层
https://doi.org/10.1007/978-1-4684-8810-4he great variety of the dynamics of three point vortices near the singularity giving rise to vortex collapse. We discuss the strong influence of the existence of a finite time singularity on the dynamics, especially on how the period of the motion evolves as we get closer to the singular conditions.
发表于 2025-3-23 07:50:22 | 显示全部楼层
https://doi.org/10.1007/978-3-642-73602-5f the translational atomic motion provides the semiclassical Hamilton-Schrödinger equations of motion which are a 5-dimensional nonlinear dynamical system with two integrals of motion. The atomic dynamics can be regular or chaotic (in the sense of exponential sensitivity to small variations in initi
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-14 18:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表