找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications; Cetraro, Italy 2011, Yves Achdou,Guy Barles,Grigory L. Litv

[复制链接]
楼主: Jaundice
发表于 2025-3-23 11:31:19 | 显示全部楼层
发表于 2025-3-23 14:59:41 | 显示全部楼层
发表于 2025-3-23 18:58:55 | 显示全部楼层
发表于 2025-3-24 00:24:02 | 显示全部楼层
https://doi.org/10.1057/9781403907417we consider the large time behavior of periodic solutions of Hamilton–Jacobi Equations: we describe recents results obtained by using partial differential equations type arguments. This part is complementary of the course of H. Ishii which presents the dynamical system approach (“weak KAM approach”).
发表于 2025-3-24 05:14:12 | 显示全部楼层
发表于 2025-3-24 07:52:40 | 显示全部楼层
发表于 2025-3-24 13:29:06 | 显示全部楼层
https://doi.org/10.1007/978-1-349-20298-0s to optimization problems on graphs are discussed. Universal algorithms for numerical algorithms in idempotent mathematics are investigated. In particular, an idempotent version of interval analysis is briefly discussed.
发表于 2025-3-24 16:19:07 | 显示全部楼层
,Idempotent/Tropical Analysis, the Hamilton–Jacobi and Bellman Equations,s to optimization problems on graphs are discussed. Universal algorithms for numerical algorithms in idempotent mathematics are investigated. In particular, an idempotent version of interval analysis is briefly discussed.
发表于 2025-3-24 19:08:56 | 显示全部楼层
International Issues in Adult Educationntly introduced by J-M. Lasry and P-L. Lions. They may lead to systems of evolutive partial differential equations coupling a forward Bellman equation and a backward Fokker–Planck equation. The forward-backward structure is an important feature of this system, which makes it necessary to design new
发表于 2025-3-25 00:01:43 | 显示全部楼层
https://doi.org/10.1057/9781403907417n, stability and comparison results (in the continuous and discontinuous frameworks), boundary conditions in the viscosity sense, Perron’s method, Barron–Jensen solutions . etc. We use a running example on exit time control problems to illustrate the different notions and results. In a second part,
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 09:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表