找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Fundamentals of Differential Geometry; Serge Lang Textbook 1999 Springer Science+Business Media New York 1999 Derivative.Riemannian geomet

[复制链接]
查看: 53691|回复: 57
发表于 2025-3-21 16:59:59 | 显示全部楼层 |阅读模式
书目名称Fundamentals of Differential Geometry
编辑Serge Lang
视频video
概述New edition of a successful Serge Lang title.Written in the authors unique and engaging style, with clear and elegant proofs.Covers the fundamentals of differential geometry, differential topology, an
丛书名称Graduate Texts in Mathematics
图书封面Titlebook: Fundamentals of Differential Geometry;  Serge Lang Textbook 1999 Springer Science+Business Media New York 1999 Derivative.Riemannian geomet
描述The present book aims to give a fairly comprehensive account of the fundamentals of differential manifolds and differential geometry. The size of the book influenced where to stop, and there would be enough material for a second volume (this is not a threat). At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differen­ tiable maps in them (immersions, embeddings, isomorphisms, etc. ). One may also use differentiable structures on topological manifolds to deter­ mine the topological structure of the manifold (for example, it la Smale [Sm 67]). In differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a Riemannian metric, ad lib. ) and studies properties connected especially with these objects. Formally, one may say that one studies properties invariant under the group of differentiable automorphisms which preserve the additional structure. In differential equations, one studies vector
出版日期Textbook 1999
关键词Derivative; Riemannian geometry; Smooth function; calculus; curvature; differential equation; differential
版次1
doihttps://doi.org/10.1007/978-1-4612-0541-8
isbn_softcover978-1-4612-6810-9
isbn_ebook978-1-4612-0541-8Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1999
The information of publication is updating

书目名称Fundamentals of Differential Geometry影响因子(影响力)




书目名称Fundamentals of Differential Geometry影响因子(影响力)学科排名




书目名称Fundamentals of Differential Geometry网络公开度




书目名称Fundamentals of Differential Geometry网络公开度学科排名




书目名称Fundamentals of Differential Geometry被引频次




书目名称Fundamentals of Differential Geometry被引频次学科排名




书目名称Fundamentals of Differential Geometry年度引用




书目名称Fundamentals of Differential Geometry年度引用学科排名




书目名称Fundamentals of Differential Geometry读者反馈




书目名称Fundamentals of Differential Geometry读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:00:21 | 显示全部楼层
第150248主题贴--第2楼 (沙发)
发表于 2025-3-22 02:54:59 | 显示全部楼层
板凳
发表于 2025-3-22 05:43:56 | 显示全部楼层
第4楼
发表于 2025-3-22 10:53:32 | 显示全部楼层
5楼
发表于 2025-3-22 14:49:09 | 显示全部楼层
6楼
发表于 2025-3-22 19:32:06 | 显示全部楼层
7楼
发表于 2025-3-22 23:32:32 | 显示全部楼层
8楼
发表于 2025-3-23 02:13:15 | 显示全部楼层
9楼
发表于 2025-3-23 06:59:23 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 10:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表