找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Foundations of Hyperbolic Manifolds; John G. Ratcliffe Textbook 2019Latest edition Springer Nature Switzerland AG 2019 Hyperbolic manifold

[复制链接]
查看: 18902|回复: 35
发表于 2025-3-21 18:48:04 | 显示全部楼层 |阅读模式
书目名称Foundations of Hyperbolic Manifolds
编辑John G. Ratcliffe
视频video
概述Expands on the second edition by including over 40 new lemmas, theorems, and corollaries, as well as a new section dedicated to arithmetic hyperbolic groups.Offers a highly readable and self-contained
丛书名称Graduate Texts in Mathematics
图书封面Titlebook: Foundations of Hyperbolic Manifolds;  John G. Ratcliffe Textbook 2019Latest edition Springer Nature Switzerland AG 2019 Hyperbolic manifold
描述.This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. This third edition greatly expands upon the second with an abundance of additional content, including a section dedicated to arithmetic hyperbolic groups. Over 40 new lemmas, theorems, and corollaries feature, along with more than 70 additional exercises. Color adds a new dimension to figures throughout..The book is divided into three parts. The first part is concerned with hyperbolic geometry and discrete groups. The main results are the characterization of hyperbolic reflection groups and Euclidean crystallographic groups. The second part is devoted to the theory of hyperbolic manifolds. The main results are Mostow’s rigidity theorem and the determination of the global geometry of hyperbolic manifolds of finite volume. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. The main result is Poincaré’s fundamental polyhedron theorem..The exposition is at the level of a second year graduate student with particular emphasis placed on readability and completeness of argument. After reading
出版日期Textbook 2019Latest edition
关键词Hyperbolic manifolds; Euclidean geometry; Spherical geometry; Inversive geometry; Isotopies of hyperboli
版次3
doihttps://doi.org/10.1007/978-3-030-31597-9
isbn_softcover978-3-030-31599-3
isbn_ebook978-3-030-31597-9Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Foundations of Hyperbolic Manifolds影响因子(影响力)




书目名称Foundations of Hyperbolic Manifolds影响因子(影响力)学科排名




书目名称Foundations of Hyperbolic Manifolds网络公开度




书目名称Foundations of Hyperbolic Manifolds网络公开度学科排名




书目名称Foundations of Hyperbolic Manifolds被引频次




书目名称Foundations of Hyperbolic Manifolds被引频次学科排名




书目名称Foundations of Hyperbolic Manifolds年度引用




书目名称Foundations of Hyperbolic Manifolds年度引用学科排名




书目名称Foundations of Hyperbolic Manifolds读者反馈




书目名称Foundations of Hyperbolic Manifolds读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:29:59 | 显示全部楼层
第146988主题贴--第2楼 (沙发)
发表于 2025-3-22 02:45:06 | 显示全部楼层
板凳
发表于 2025-3-22 05:06:26 | 显示全部楼层
第4楼
发表于 2025-3-22 11:18:00 | 显示全部楼层
5楼
发表于 2025-3-22 14:45:19 | 显示全部楼层
6楼
发表于 2025-3-22 19:55:39 | 显示全部楼层
7楼
发表于 2025-3-22 22:39:17 | 显示全部楼层
8楼
发表于 2025-3-23 04:52:25 | 显示全部楼层
9楼
发表于 2025-3-23 06:06:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 04:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表