找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Foundation Models for Natural Language Processing; Pre-trained Language Gerhard Paaß,Sven Giesselbach Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if a

[复制链接]
查看: 12988|回复: 42
发表于 2025-3-21 18:31:51 | 显示全部楼层 |阅读模式
书目名称Foundation Models for Natural Language Processing
副标题Pre-trained Language
编辑Gerhard Paaß,Sven Giesselbach
视频video
概述Offers an overview of pre-trained language models such as BERT, GPT, and sequence-to-sequence Transformer.Explains the key techniques to improve the performance of pre-trained models.Presents advanced
丛书名称Artificial Intelligence: Foundations, Theory, and Algorithms
图书封面Titlebook: Foundation Models for Natural Language Processing; Pre-trained Language Gerhard Paaß,Sven Giesselbach Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if a
描述.This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. .Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. .After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches
出版日期Book‘‘‘‘‘‘‘‘ 2023
关键词Pre-trained Language Models; Deep Learning; Natural Language Processing; Transformer Models; BERT; GPT; At
版次1
doihttps://doi.org/10.1007/978-3-031-23190-2
isbn_softcover978-3-031-23192-6
isbn_ebook978-3-031-23190-2Series ISSN 2365-3051 Series E-ISSN 2365-306X
issn_series 2365-3051
copyrightThe Editor(s) (if applicable) and The Author(s) 2023
The information of publication is updating

书目名称Foundation Models for Natural Language Processing影响因子(影响力)




书目名称Foundation Models for Natural Language Processing影响因子(影响力)学科排名




书目名称Foundation Models for Natural Language Processing网络公开度




书目名称Foundation Models for Natural Language Processing网络公开度学科排名




书目名称Foundation Models for Natural Language Processing被引频次




书目名称Foundation Models for Natural Language Processing被引频次学科排名




书目名称Foundation Models for Natural Language Processing年度引用




书目名称Foundation Models for Natural Language Processing年度引用学科排名




书目名称Foundation Models for Natural Language Processing读者反馈




书目名称Foundation Models for Natural Language Processing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:22:48 | 显示全部楼层
第146783主题贴--第2楼 (沙发)
发表于 2025-3-22 00:44:56 | 显示全部楼层
板凳
发表于 2025-3-22 04:41:38 | 显示全部楼层
第4楼
发表于 2025-3-22 12:02:40 | 显示全部楼层
5楼
发表于 2025-3-22 14:00:47 | 显示全部楼层
6楼
发表于 2025-3-22 17:05:45 | 显示全部楼层
7楼
发表于 2025-3-22 21:12:10 | 显示全部楼层
8楼
发表于 2025-3-23 03:36:59 | 显示全部楼层
9楼
发表于 2025-3-23 07:36:42 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 20:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表