找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Foliations on Riemannian Manifolds; Philippe Tondeur Book 1988 Springer-Verlag New York Inc. 1988 Mean curvature.Riemannian geometry.curva

[复制链接]
查看: 11230|回复: 50
发表于 2025-3-21 19:32:38 | 显示全部楼层 |阅读模式
书目名称Foliations on Riemannian Manifolds
编辑Philippe Tondeur
视频video
丛书名称Universitext
图书封面Titlebook: Foliations on Riemannian Manifolds;  Philippe Tondeur Book 1988 Springer-Verlag New York Inc. 1988 Mean curvature.Riemannian geometry.curva
描述A first approximation to the idea of a foliation is a dynamical system, and the resulting decomposition of a domain by its trajectories. This is an idea that dates back to the beginning of the theory of differential equations, i.e. the seventeenth century. Towards the end of the nineteenth century, Poincare developed methods for the study of global, qualitative properties of solutions of dynamical systems in situations where explicit solution methods had failed: He discovered that the study of the geometry of the space of trajectories of a dynamical system reveals complex phenomena. He emphasized the qualitative nature of these phenomena, thereby giving strong impetus to topological methods. A second approximation is the idea of a foliation as a decomposition of a manifold into submanifolds, all being of the same dimension. Here the presence of singular submanifolds, corresponding to the singularities in the case of a dynamical system, is excluded. This is the case we treat in this text, but it is by no means a comprehensive analysis. On the contrary, many situations in mathematical physics most definitely require singular foliations for a proper modeling. The global study of folia
出版日期Book 1988
关键词Mean curvature; Riemannian geometry; curvature; manifold
版次1
doihttps://doi.org/10.1007/978-1-4613-8780-0
isbn_softcover978-0-387-96707-3
isbn_ebook978-1-4613-8780-0Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York Inc. 1988
The information of publication is updating

书目名称Foliations on Riemannian Manifolds影响因子(影响力)




书目名称Foliations on Riemannian Manifolds影响因子(影响力)学科排名




书目名称Foliations on Riemannian Manifolds网络公开度




书目名称Foliations on Riemannian Manifolds网络公开度学科排名




书目名称Foliations on Riemannian Manifolds被引频次




书目名称Foliations on Riemannian Manifolds被引频次学科排名




书目名称Foliations on Riemannian Manifolds年度引用




书目名称Foliations on Riemannian Manifolds年度引用学科排名




书目名称Foliations on Riemannian Manifolds读者反馈




书目名称Foliations on Riemannian Manifolds读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:41:39 | 显示全部楼层
第144881主题贴--第2楼 (沙发)
发表于 2025-3-22 03:36:25 | 显示全部楼层
板凳
发表于 2025-3-22 06:17:17 | 显示全部楼层
第4楼
发表于 2025-3-22 11:10:09 | 显示全部楼层
5楼
发表于 2025-3-22 15:38:19 | 显示全部楼层
6楼
发表于 2025-3-22 18:27:20 | 显示全部楼层
7楼
发表于 2025-3-22 23:51:22 | 显示全部楼层
8楼
发表于 2025-3-23 01:47:42 | 显示全部楼层
9楼
发表于 2025-3-23 07:54:38 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 20:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表