找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: First-order and Stochastic Optimization Methods for Machine Learning; Guanghui Lan Book 2020 Springer Nature Switzerland AG 2020 Stochasti

[复制链接]
查看: 52598|回复: 42
发表于 2025-3-21 19:49:32 | 显示全部楼层 |阅读模式
书目名称First-order and Stochastic Optimization Methods for Machine Learning
编辑Guanghui Lan
视频video
概述Presents comprehensive study of topics in machine learning from introductory material through most complicated algorithms.Summarizes most recent findings in the area of machine learning.Addresses a br
丛书名称Springer Series in the Data Sciences
图书封面Titlebook: First-order and Stochastic Optimization Methods for Machine Learning;  Guanghui Lan Book 2020 Springer Nature Switzerland AG 2020 Stochasti
描述.This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning..
出版日期Book 2020
关键词Stochastic optimization methods; Machine learning algorithms; Randomized algorithms; Nonconvex optimiza
版次1
doihttps://doi.org/10.1007/978-3-030-39568-1
isbn_softcover978-3-030-39570-4
isbn_ebook978-3-030-39568-1Series ISSN 2365-5674 Series E-ISSN 2365-5682
issn_series 2365-5674
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称First-order and Stochastic Optimization Methods for Machine Learning影响因子(影响力)




书目名称First-order and Stochastic Optimization Methods for Machine Learning影响因子(影响力)学科排名




书目名称First-order and Stochastic Optimization Methods for Machine Learning网络公开度




书目名称First-order and Stochastic Optimization Methods for Machine Learning网络公开度学科排名




书目名称First-order and Stochastic Optimization Methods for Machine Learning被引频次




书目名称First-order and Stochastic Optimization Methods for Machine Learning被引频次学科排名




书目名称First-order and Stochastic Optimization Methods for Machine Learning年度引用




书目名称First-order and Stochastic Optimization Methods for Machine Learning年度引用学科排名




书目名称First-order and Stochastic Optimization Methods for Machine Learning读者反馈




书目名称First-order and Stochastic Optimization Methods for Machine Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:09:54 | 显示全部楼层
第143879主题贴--第2楼 (沙发)
发表于 2025-3-22 02:13:39 | 显示全部楼层
板凳
发表于 2025-3-22 07:16:12 | 显示全部楼层
第4楼
发表于 2025-3-22 12:48:46 | 显示全部楼层
5楼
发表于 2025-3-22 14:06:36 | 显示全部楼层
6楼
发表于 2025-3-22 17:12:59 | 显示全部楼层
7楼
发表于 2025-3-22 22:21:03 | 显示全部楼层
8楼
发表于 2025-3-23 01:46:57 | 显示全部楼层
9楼
发表于 2025-3-23 07:48:13 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 11:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表