找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Finitely Generated Abelian Groups and Similarity of Matrices over a Field; Christopher Norman Textbook 2012 Springer-Verlag London Limited

[复制链接]
查看: 40402|回复: 35
发表于 2025-3-21 17:22:14 | 显示全部楼层 |阅读模式
书目名称Finitely Generated Abelian Groups and Similarity of Matrices over a Field
编辑Christopher Norman
视频video
概述The theory of finitely generated abelian groups is introduced in an understandable and concrete way.The analogous theory of similarity of square matrices over a field, including the Jordan form, is ex
丛书名称Springer Undergraduate Mathematics Series
图书封面Titlebook: Finitely Generated Abelian Groups and Similarity of Matrices over a Field;  Christopher Norman Textbook 2012 Springer-Verlag London Limited
描述.At first sight, finitely generated abelian groups and canonical forms of matrices appear to have little in common.  However, reduction to Smith normal form, named after its originator H.J.S.Smith in 1861, is a matrix version of the Euclidean algorithm and is exactly what the theory requires in both cases.  Starting with matrices over the integers, Part 1 of this book provides a measured introduction to such groups: two finitely generated abelian groups are isomorphic if and only if their invariant factor sequences are identical.  The analogous theory of matrix similarity over a field is then developed in Part 2 starting with matrices having polynomial entries: two matrices over a field are similar if and only if their rational canonical forms are equal.  Under certain conditions each matrix is similar to a diagonal or nearly diagonal matrix, namely its Jordan form.. .The reader is assumed to be familiar with the elementary properties of rings and fields.  Also a knowledge of abstract linear algebra including vector spaces, linear mappings, matrices, bases and dimension is essential, although much of the theory is covered in the text but from a more general standpoint: the role of
出版日期Textbook 2012
关键词Abelian groups; Smith normal form; equivalent matrices; homomorphisms and isomorphisms; invariant factor
版次1
doihttps://doi.org/10.1007/978-1-4471-2730-7
isbn_softcover978-1-4471-2729-1
isbn_ebook978-1-4471-2730-7Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightSpringer-Verlag London Limited 2012
The information of publication is updating

书目名称Finitely Generated Abelian Groups and Similarity of Matrices over a Field影响因子(影响力)




书目名称Finitely Generated Abelian Groups and Similarity of Matrices over a Field影响因子(影响力)学科排名




书目名称Finitely Generated Abelian Groups and Similarity of Matrices over a Field网络公开度




书目名称Finitely Generated Abelian Groups and Similarity of Matrices over a Field网络公开度学科排名




书目名称Finitely Generated Abelian Groups and Similarity of Matrices over a Field被引频次




书目名称Finitely Generated Abelian Groups and Similarity of Matrices over a Field被引频次学科排名




书目名称Finitely Generated Abelian Groups and Similarity of Matrices over a Field年度引用




书目名称Finitely Generated Abelian Groups and Similarity of Matrices over a Field年度引用学科排名




书目名称Finitely Generated Abelian Groups and Similarity of Matrices over a Field读者反馈




书目名称Finitely Generated Abelian Groups and Similarity of Matrices over a Field读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:50:57 | 显示全部楼层
第143699主题贴--第2楼 (沙发)
发表于 2025-3-22 01:36:42 | 显示全部楼层
板凳
发表于 2025-3-22 08:05:02 | 显示全部楼层
第4楼
发表于 2025-3-22 12:33:53 | 显示全部楼层
5楼
发表于 2025-3-22 16:18:25 | 显示全部楼层
6楼
发表于 2025-3-22 20:43:51 | 显示全部楼层
7楼
发表于 2025-3-23 01:10:13 | 显示全部楼层
8楼
发表于 2025-3-23 04:56:27 | 显示全部楼层
9楼
发表于 2025-3-23 06:44:06 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-3 09:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表