找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Finite Fields; Normal Bases and Com Dirk Hachenberger Book 1997 Springer Science+Business Media New York 1997 Arithmetic.addition.algebra.a

[复制链接]
查看: 43503|回复: 39
发表于 2025-3-21 18:17:23 | 显示全部楼层 |阅读模式
书目名称Finite Fields
副标题Normal Bases and Com
编辑Dirk Hachenberger
视频video
丛书名称The Springer International Series in Engineering and Computer Science
图书封面Titlebook: Finite Fields; Normal Bases and Com Dirk Hachenberger Book 1997 Springer Science+Business Media New York 1997 Arithmetic.addition.algebra.a
描述Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed­ ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski‘s book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo­ rem, a classical result from field theory, stating that in every finite dimen­ sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor­ mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very usef
出版日期Book 1997
关键词Arithmetic; addition; algebra; algorithms; field theory
版次1
doihttps://doi.org/10.1007/978-1-4615-6269-6
isbn_softcover978-1-4613-7877-8
isbn_ebook978-1-4615-6269-6Series ISSN 0893-3405
issn_series 0893-3405
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

书目名称Finite Fields影响因子(影响力)




书目名称Finite Fields影响因子(影响力)学科排名




书目名称Finite Fields网络公开度




书目名称Finite Fields网络公开度学科排名




书目名称Finite Fields被引频次




书目名称Finite Fields被引频次学科排名




书目名称Finite Fields年度引用




书目名称Finite Fields年度引用学科排名




书目名称Finite Fields读者反馈




书目名称Finite Fields读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:54:54 | 显示全部楼层
第143613主题贴--第2楼 (沙发)
发表于 2025-3-22 03:49:27 | 显示全部楼层
板凳
发表于 2025-3-22 04:51:52 | 显示全部楼层
第4楼
发表于 2025-3-22 08:42:47 | 显示全部楼层
5楼
发表于 2025-3-22 16:18:09 | 显示全部楼层
6楼
发表于 2025-3-22 17:06:44 | 显示全部楼层
7楼
发表于 2025-3-23 00:23:56 | 显示全部楼层
8楼
发表于 2025-3-23 01:36:58 | 显示全部楼层
9楼
发表于 2025-3-23 05:55:04 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 05:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表