找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Field Arithmetic; Michael D. Fried,Moshe Jarden Book 20083rd edition Springer-Verlag Berlin Heidelberg 2008 Absolute Galois Groups.Algebra

[复制链接]
查看: 42687|回复: 64
发表于 2025-3-21 18:16:10 | 显示全部楼层 |阅读模式
书目名称Field Arithmetic
编辑Michael D. Fried,Moshe Jarden
视频video
概述Third revised edition of the classic Ergebnisse volume "Field Arithmetic" by M. Fried and M. Jarden.Improves the second edition in two ways:.1. Removes many typos and mathematical inaccuracies that oc
丛书名称Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
图书封面Titlebook: Field Arithmetic;  Michael D. Fried,Moshe Jarden Book 20083rd edition Springer-Verlag Berlin Heidelberg 2008 Absolute Galois Groups.Algebra
描述.Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements...Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of
出版日期Book 20083rd edition
关键词Absolute Galois Groups; Algebra; Arithmetic; Counting; Finite Fields; Galois Stratification; Hilbertian Fi
版次3
doihttps://doi.org/10.1007/978-3-540-77270-5
isbn_ebook978-3-540-77270-5Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

书目名称Field Arithmetic影响因子(影响力)




书目名称Field Arithmetic影响因子(影响力)学科排名




书目名称Field Arithmetic网络公开度




书目名称Field Arithmetic网络公开度学科排名




书目名称Field Arithmetic被引频次




书目名称Field Arithmetic被引频次学科排名




书目名称Field Arithmetic年度引用




书目名称Field Arithmetic年度引用学科排名




书目名称Field Arithmetic读者反馈




书目名称Field Arithmetic读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:51:44 | 显示全部楼层
第142575主题贴--第2楼 (沙发)
发表于 2025-3-22 02:37:44 | 显示全部楼层
板凳
发表于 2025-3-22 07:09:48 | 显示全部楼层
第4楼
发表于 2025-3-22 09:19:13 | 显示全部楼层
5楼
发表于 2025-3-22 16:17:06 | 显示全部楼层
6楼
发表于 2025-3-22 17:55:53 | 显示全部楼层
7楼
发表于 2025-3-23 00:17:33 | 显示全部楼层
8楼
发表于 2025-3-23 01:49:38 | 显示全部楼层
9楼
发表于 2025-3-23 08:43:49 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 11:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表