找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Federated and Transfer Learning; Roozbeh Razavi-Far,Boyu Wang,Qiang Yang Book 2023 The Editor(s) (if applicable) and The Author(s), under

[复制链接]
查看: 23606|回复: 54
发表于 2025-3-21 16:34:05 | 显示全部楼层 |阅读模式
书目名称Federated and Transfer Learning
编辑Roozbeh Razavi-Far,Boyu Wang,Qiang Yang
视频video
概述Helps readers to understand transfer learning in conjunction with federated learning.Bridges the gap between transfer learning and federated learning.Performs a comprehensive study on the recent advan
丛书名称Adaptation, Learning, and Optimization
图书封面Titlebook: Federated and Transfer Learning;  Roozbeh Razavi-Far,Boyu Wang,Qiang Yang Book 2023 The Editor(s) (if applicable) and The Author(s), under
描述.This book provides a collection of recent research works on learning from decentralized data, transferring information from one domain to another, and addressing theoretical issues on improving the privacy and incentive factors of federated learning as well as its connection with transfer learning and reinforcement learning. Over the last few years, the machine learning community has become fascinated by federated and transfer learning. Transfer and federated learning have achieved great success and popularity in many different fields of application. The intended audience of this book is students and academics aiming to apply federated and transfer learning to solve different kinds of real-world problems, as well as scientists, researchers, and practitioners in AI industries, autonomous vehicles, and cyber-physical systems who wish to pursue new scientific innovations and update their knowledge on federated and transfer learning and their applications..
出版日期Book 2023
关键词Transfer Learning; Federated Learning; Domain Adaptation; Zero-shot Learning; One-shot Learning; Multitas
版次1
doihttps://doi.org/10.1007/978-3-031-11748-0
isbn_softcover978-3-031-11750-3
isbn_ebook978-3-031-11748-0Series ISSN 1867-4534 Series E-ISSN 1867-4542
issn_series 1867-4534
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Federated and Transfer Learning影响因子(影响力)




书目名称Federated and Transfer Learning影响因子(影响力)学科排名




书目名称Federated and Transfer Learning网络公开度




书目名称Federated and Transfer Learning网络公开度学科排名




书目名称Federated and Transfer Learning被引频次




书目名称Federated and Transfer Learning被引频次学科排名




书目名称Federated and Transfer Learning年度引用




书目名称Federated and Transfer Learning年度引用学科排名




书目名称Federated and Transfer Learning读者反馈




书目名称Federated and Transfer Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:27:07 | 显示全部楼层
第141598主题贴--第2楼 (沙发)
发表于 2025-3-22 02:31:39 | 显示全部楼层
板凳
发表于 2025-3-22 06:51:43 | 显示全部楼层
第4楼
发表于 2025-3-22 09:21:15 | 显示全部楼层
5楼
发表于 2025-3-22 15:39:44 | 显示全部楼层
6楼
发表于 2025-3-22 17:39:47 | 显示全部楼层
7楼
发表于 2025-3-22 22:46:38 | 显示全部楼层
8楼
发表于 2025-3-23 03:20:02 | 显示全部楼层
9楼
发表于 2025-3-23 06:45:57 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 11:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表