找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Federated Learning Systems; Towards Next-Generat Muhammad Habib ur Rehman,Mohamed Medhat Gaber Book 2021 The Editor(s) (if applicable) and

[复制链接]
查看: 19390|回复: 39
发表于 2025-3-21 18:28:55 | 显示全部楼层 |阅读模式
书目名称Federated Learning Systems
副标题Towards Next-Generat
编辑Muhammad Habib ur Rehman,Mohamed Medhat Gaber
视频video
概述Presents advances in federated learning.Shows how federated learning can transform next-generation artificial intelligence applications.Proposes solutions to address key federated learning challenges
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Federated Learning Systems; Towards Next-Generat Muhammad Habib ur Rehman,Mohamed Medhat Gaber Book 2021 The Editor(s) (if applicable) and
描述This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data..
出版日期Book 2021
关键词Deep Learning; Differential Privacy; Distributed Machine Learning; Federated Learning; Fine-grained Fede
版次1
doihttps://doi.org/10.1007/978-3-030-70604-3
isbn_softcover978-3-030-70606-7
isbn_ebook978-3-030-70604-3Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Federated Learning Systems影响因子(影响力)




书目名称Federated Learning Systems影响因子(影响力)学科排名




书目名称Federated Learning Systems网络公开度




书目名称Federated Learning Systems网络公开度学科排名




书目名称Federated Learning Systems被引频次




书目名称Federated Learning Systems被引频次学科排名




书目名称Federated Learning Systems年度引用




书目名称Federated Learning Systems年度引用学科排名




书目名称Federated Learning Systems读者反馈




书目名称Federated Learning Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:43:50 | 显示全部楼层
第141595主题贴--第2楼 (沙发)
发表于 2025-3-22 01:43:14 | 显示全部楼层
板凳
发表于 2025-3-22 05:10:27 | 显示全部楼层
第4楼
发表于 2025-3-22 10:30:39 | 显示全部楼层
5楼
发表于 2025-3-22 15:44:44 | 显示全部楼层
6楼
发表于 2025-3-22 19:28:14 | 显示全部楼层
7楼
发表于 2025-3-22 23:41:56 | 显示全部楼层
8楼
发表于 2025-3-23 04:07:23 | 显示全部楼层
9楼
发表于 2025-3-23 05:43:23 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 23:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表