找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Federated Learning; A Comprehensive Over Heiko Ludwig,Nathalie Baracaldo Book 2022 The Editor(s) (if applicable) and The Author(s), under e

[复制链接]
查看: 27231|回复: 56
发表于 2025-3-21 16:49:41 | 显示全部楼层 |阅读模式
书目名称Federated Learning
副标题A Comprehensive Over
编辑Heiko Ludwig,Nathalie Baracaldo
视频video
概述First major book on Federated Learning, and the standard text on the topic by the leading researchers worldwide.Federated Learning as a concept is only a few years old but has seen a rapid increase in
图书封面Titlebook: Federated Learning; A Comprehensive Over Heiko Ludwig,Nathalie Baracaldo Book 2022 The Editor(s) (if applicable) and The Author(s), under e
描述.Federated Learning: A Comprehensive Overview of Methods and Applications. presents an in-depth discussion of the most important issues and approaches to federated learning for researchers and practitioners. .Federated Learning (FL) is an approach to machine learning in which the training data are not managed centrally. Data are retained by data parties that participate in the FL process and are not shared with any other entity. This makes FL an increasingly popular solution for machine learning tasks for which bringing data together in a centralized repository is problematic, either for privacy, regulatory or practical reasons..This book explains recent progress in research and the state-of-the-art development of Federated Learning (FL), from the initial conception of the field to first applications and commercial use. To obtain this broad and deep overview, leading researchers address the different perspectives of federated learning: the core machine learning perspective, privacy and security, distributed systems, and specific application domains. Readers learn about the challenges faced in each of these areas, how they are interconnected, and how they are solved by state-of-the-
出版日期Book 2022
关键词Deep Learning; Machine Learning; Artificial Intelligence; Vertically Partitioned Federated Learning; Neu
版次1
doihttps://doi.org/10.1007/978-3-030-96896-0
isbn_softcover978-3-030-96898-4
isbn_ebook978-3-030-96896-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Federated Learning影响因子(影响力)




书目名称Federated Learning影响因子(影响力)学科排名




书目名称Federated Learning网络公开度




书目名称Federated Learning网络公开度学科排名




书目名称Federated Learning被引频次




书目名称Federated Learning被引频次学科排名




书目名称Federated Learning年度引用




书目名称Federated Learning年度引用学科排名




书目名称Federated Learning读者反馈




书目名称Federated Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:52:53 | 显示全部楼层
第141592主题贴--第2楼 (沙发)
发表于 2025-3-22 00:36:48 | 显示全部楼层
板凳
发表于 2025-3-22 05:42:49 | 显示全部楼层
第4楼
发表于 2025-3-22 12:48:27 | 显示全部楼层
5楼
发表于 2025-3-22 13:40:20 | 显示全部楼层
6楼
发表于 2025-3-22 18:35:50 | 显示全部楼层
7楼
发表于 2025-3-23 01:03:04 | 显示全部楼层
8楼
发表于 2025-3-23 02:46:32 | 显示全部楼层
9楼
发表于 2025-3-23 06:40:52 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 17:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表