找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Federated Learning; Privacy and Incentiv Qiang Yang,Lixin Fan,Han Yu Book 2020 Springer Nature Switzerland AG 2020 distributed machine lear

[复制链接]
查看: 46536|回复: 60
发表于 2025-3-21 18:00:14 | 显示全部楼层 |阅读模式
书目名称Federated Learning
副标题Privacy and Incentiv
编辑Qiang Yang,Lixin Fan,Han Yu
视频video
概述Provides a comprehensive and self-contained introduction to Federated Learning.Popular topic for GDPR.Covers learning, implementation and practice of Federated Learning
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Federated Learning; Privacy and Incentiv Qiang Yang,Lixin Fan,Han Yu Book 2020 Springer Nature Switzerland AG 2020 distributed machine lear
描述.This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. ..Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR...This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about fed
出版日期Book 2020
关键词distributed machine learning; privacy preserving; machine learning; adversarial learning; artificial int
版次1
doihttps://doi.org/10.1007/978-3-030-63076-8
isbn_softcover978-3-030-63075-1
isbn_ebook978-3-030-63076-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Federated Learning影响因子(影响力)




书目名称Federated Learning影响因子(影响力)学科排名




书目名称Federated Learning网络公开度




书目名称Federated Learning网络公开度学科排名




书目名称Federated Learning被引频次




书目名称Federated Learning被引频次学科排名




书目名称Federated Learning年度引用




书目名称Federated Learning年度引用学科排名




书目名称Federated Learning读者反馈




书目名称Federated Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:59:16 | 显示全部楼层
第141590主题贴--第2楼 (沙发)
发表于 2025-3-22 03:46:27 | 显示全部楼层
板凳
发表于 2025-3-22 06:59:04 | 显示全部楼层
第4楼
发表于 2025-3-22 12:07:36 | 显示全部楼层
5楼
发表于 2025-3-22 16:04:23 | 显示全部楼层
6楼
发表于 2025-3-22 20:54:29 | 显示全部楼层
7楼
发表于 2025-3-22 22:33:18 | 显示全部楼层
8楼
发表于 2025-3-23 05:02:45 | 显示全部楼层
9楼
发表于 2025-3-23 09:35:35 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 10:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表