找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Feature Selection for High-Dimensional Data; Verónica Bolón-Canedo,Noelia Sánchez-Maroño,Amparo Book 2015 Springer International Publishin

[复制链接]
查看: 27524|回复: 38
发表于 2025-3-21 18:51:17 | 显示全部楼层 |阅读模式
书目名称Feature Selection for High-Dimensional Data
编辑Verónica Bolón-Canedo,Noelia Sánchez-Maroño,Amparo
视频videohttp://file.papertrans.cn/342/341566/341566.mp4
概述Explains how to choose an optimal subset of features according to a certain criterion.Coherent, comprehensive approach to feature subset selection in the scope of classification problems.Authors expla
丛书名称Artificial Intelligence: Foundations, Theory, and Algorithms
图书封面Titlebook: Feature Selection for High-Dimensional Data;  Verónica Bolón-Canedo,Noelia Sánchez-Maroño,Amparo Book 2015 Springer International Publishin
描述.This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data..The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. .They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers..The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining..
出版日期Book 2015
关键词Big Data; Big Dimensionality; Data Preprocessing; Data Reduction; Dimensionality Reduction; Feature Selec
版次1
doihttps://doi.org/10.1007/978-3-319-21858-8
isbn_softcover978-3-319-36643-2
isbn_ebook978-3-319-21858-8Series ISSN 2365-3051 Series E-ISSN 2365-306X
issn_series 2365-3051
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Feature Selection for High-Dimensional Data影响因子(影响力)




书目名称Feature Selection for High-Dimensional Data影响因子(影响力)学科排名




书目名称Feature Selection for High-Dimensional Data网络公开度




书目名称Feature Selection for High-Dimensional Data网络公开度学科排名




书目名称Feature Selection for High-Dimensional Data被引频次




书目名称Feature Selection for High-Dimensional Data被引频次学科排名




书目名称Feature Selection for High-Dimensional Data年度引用




书目名称Feature Selection for High-Dimensional Data年度引用学科排名




书目名称Feature Selection for High-Dimensional Data读者反馈




书目名称Feature Selection for High-Dimensional Data读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:09:09 | 显示全部楼层
第141566主题贴--第2楼 (沙发)
发表于 2025-3-22 01:41:58 | 显示全部楼层
板凳
发表于 2025-3-22 05:13:33 | 显示全部楼层
第4楼
发表于 2025-3-22 08:55:08 | 显示全部楼层
5楼
发表于 2025-3-22 16:01:38 | 显示全部楼层
6楼
发表于 2025-3-22 17:35:30 | 显示全部楼层
7楼
发表于 2025-3-22 22:44:02 | 显示全部楼层
8楼
发表于 2025-3-23 04:51:51 | 显示全部楼层
9楼
发表于 2025-3-23 09:09:51 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-9-11 22:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表