找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering; Laith Mohammad Qasim Abualigah Book 2019 Springer Nature

[复制链接]
查看: 23849|回复: 38
发表于 2025-3-21 19:49:59 | 显示全部楼层 |阅读模式
书目名称Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering
编辑Laith Mohammad Qasim Abualigah
视频video
概述Presents a new method for solving the text document clustering problem and demonstrates that it can outperform other comparable methods.Covers the main text clustering preprocessing steps and the meta
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering;  Laith Mohammad Qasim Abualigah Book 2019 Springer Nature
描述.This book puts forward a new method for solving the text document (TD) clustering problem, which is established in two main stages: (i) A new feature selection method based on a particle swarm optimization algorithm with a novel weighting scheme is proposed, as well as a detailed dimension reduction technique, in order to obtain a new subset of more informative features with low-dimensional space. This new subset is subsequently used to improve the performance of the text clustering (TC) algorithm and reduce its computation time. The k-mean clustering algorithm is used to evaluate the effectiveness of the obtained subsets. (ii) Four krill herd algorithms (KHAs), namely, the (a) basic KHA, (b) modified KHA, (c) hybrid KHA, and (d) multi-objective hybrid KHA, are proposed to solve the TC problem; each algorithm represents an incremental improvement on its predecessor. For the evaluation process, seven benchmark text datasets are used with different characterizations and complexities..Text document (TD) clustering is a new trend in text mining in which the TDs are separated into several coherent clusters, where all documents in the same cluster are similar. The findings presented her
出版日期Book 2019
关键词Krill Herd Algorithm; KHA; Text Document Clustering; Dimension Reduction Techniques; Clustering Algorith
版次1
doihttps://doi.org/10.1007/978-3-030-10674-4
isbn_ebook978-3-030-10674-4Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering影响因子(影响力)




书目名称Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering影响因子(影响力)学科排名




书目名称Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering网络公开度




书目名称Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering网络公开度学科排名




书目名称Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering被引频次




书目名称Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering被引频次学科排名




书目名称Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering年度引用




书目名称Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering年度引用学科排名




书目名称Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering读者反馈




书目名称Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:33:38 | 显示全部楼层
第141564主题贴--第2楼 (沙发)
发表于 2025-3-22 00:49:47 | 显示全部楼层
板凳
发表于 2025-3-22 07:30:08 | 显示全部楼层
第4楼
发表于 2025-3-22 08:42:55 | 显示全部楼层
5楼
发表于 2025-3-22 13:15:48 | 显示全部楼层
6楼
发表于 2025-3-22 19:16:13 | 显示全部楼层
7楼
发表于 2025-3-22 23:22:08 | 显示全部楼层
8楼
发表于 2025-3-23 02:09:40 | 显示全部楼层
9楼
发表于 2025-3-23 07:07:55 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 20:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表