找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Fatou Type Theorems; Maximal Functions an Fausto Biase Book 1998 Birkhäuser 1998 Fatou Type.Finite.Pseudoconvexity.function.mathematics.max

[复制链接]
查看: 50383|回复: 40
发表于 2025-3-21 17:28:24 | 显示全部楼层 |阅读模式
书目名称Fatou Type Theorems
副标题Maximal Functions an
编辑Fausto Biase
视频video
丛书名称Progress in Mathematics
图书封面Titlebook: Fatou Type Theorems; Maximal Functions an Fausto Biase Book 1998 Birkhäuser 1998 Fatou Type.Finite.Pseudoconvexity.function.mathematics.max
描述A basic principle governing the boundary behaviour of holomorphic func­ tions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions ad­ mit a boundary limit, if we approach the bounda-ry point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean half­ spaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and
出版日期Book 1998
关键词Fatou Type; Finite; Pseudoconvexity; function; mathematics; maximum; theorem
版次1
doihttps://doi.org/10.1007/978-1-4612-2310-8
isbn_softcover978-1-4612-7496-4
isbn_ebook978-1-4612-2310-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkhäuser 1998
The information of publication is updating

书目名称Fatou Type Theorems影响因子(影响力)




书目名称Fatou Type Theorems影响因子(影响力)学科排名




书目名称Fatou Type Theorems网络公开度




书目名称Fatou Type Theorems网络公开度学科排名




书目名称Fatou Type Theorems被引频次




书目名称Fatou Type Theorems被引频次学科排名




书目名称Fatou Type Theorems年度引用




书目名称Fatou Type Theorems年度引用学科排名




书目名称Fatou Type Theorems读者反馈




书目名称Fatou Type Theorems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:01:06 | 显示全部楼层
第141443主题贴--第2楼 (沙发)
发表于 2025-3-22 03:30:24 | 显示全部楼层
板凳
发表于 2025-3-22 05:09:03 | 显示全部楼层
第4楼
发表于 2025-3-22 09:11:26 | 显示全部楼层
5楼
发表于 2025-3-22 16:08:35 | 显示全部楼层
6楼
发表于 2025-3-22 18:15:38 | 显示全部楼层
7楼
发表于 2025-3-22 23:43:46 | 显示全部楼层
8楼
发表于 2025-3-23 03:47:38 | 显示全部楼层
9楼
发表于 2025-3-23 08:36:44 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 08:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表