找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: eQTL Analysis; Methods and Protocol Xinghua Mindy Shi Book 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020 mining.g

[复制链接]
楼主: 贫血
发表于 2025-3-25 03:46:36 | 显示全部楼层
发表于 2025-3-25 08:22:11 | 显示全部楼层
发表于 2025-3-25 14:13:35 | 显示全部楼层
发表于 2025-3-25 16:55:22 | 显示全部楼层
发表于 2025-3-25 23:04:52 | 显示全部楼层
Genome-Wide Composite Interval Mapping (GCIM) of Expressional Quantitative Trait Loci in Backcross Pgenetic model to develop genome-wide composite interval mapping (GCIM). This chapter covers the GCIM procedure in a backcross or doubled haploid populations. We describe the genetic model, parameter estimation, multi-locus genetic model, hypothesis tests, and software. Finally, some issues related to the GCIM method are discussed.
发表于 2025-3-26 02:32:16 | 显示全部楼层
Expression Quantitative Trait Loci (eQTL) Analysis in Cancermorigenesis and development. Here we describe a detailed workflow for identifying eQTLs in cancer using existing packages and software. The key package is Matrix eQTL, which requires input data of genotypes, genes expression, and covariates. This pipeline can be easily applied in a related research field.
发表于 2025-3-26 06:35:19 | 显示全部楼层
发表于 2025-3-26 10:38:13 | 显示全部楼层
发表于 2025-3-26 13:04:04 | 显示全部楼层
Statistical and Machine Learning Methods for eQTL Analysist distinct computational and statistical challenges that require advanced methodological development to overcome. In recent years, many statistical and machine learning methods for eQTL analysis have been developed with the ability to provide a more complex perspective towards the identification of
发表于 2025-3-26 17:16:28 | 显示全部楼层
Sparse Regression Models for Unraveling Group and Individual Associations in eQTL Mapping. We perform extensive experiments on both simulated datasets and yeast datasets to demonstrate the effectiveness and efficiency of the proposed method. The results show that . can effectively detect both individual and group-wise signals and outperform the state-of-the-arts by a large margin. This
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 01:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表