找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Extrinsic Geometry of Foliations; Vladimir Rovenski,Paweł Walczak Book 2021 Springer Nature Switzerland AG 2021 foliations.extrinsic geome

[复制链接]
查看: 46177|回复: 35
发表于 2025-3-21 18:15:20 | 显示全部楼层 |阅读模式
书目名称Extrinsic Geometry of Foliations
编辑Vladimir Rovenski,Paweł Walczak
视频video
概述Problems of prescribing the extrinsic geometry and curvature of foliations are central to the book.Presents the state of the art in geometric and analytical theory of foliations.Designed for newcomers
丛书名称Progress in Mathematics
图书封面Titlebook: Extrinsic Geometry of Foliations;  Vladimir Rovenski,Paweł Walczak Book 2021 Springer Nature Switzerland AG 2021 foliations.extrinsic geome
描述.This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and ‘computable‘ Finsler metrics..The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors‘ life-long work in extrinsic geometry.  It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications.  It may also be a useful supplement to
出版日期Book 2021
关键词foliations; extrinsic geometry; Ricci flow; curvature; integral formulas; variation formulas; mean curvatu
版次1
doihttps://doi.org/10.1007/978-3-030-70067-6
isbn_softcover978-3-030-70069-0
isbn_ebook978-3-030-70067-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Extrinsic Geometry of Foliations影响因子(影响力)




书目名称Extrinsic Geometry of Foliations影响因子(影响力)学科排名




书目名称Extrinsic Geometry of Foliations网络公开度




书目名称Extrinsic Geometry of Foliations网络公开度学科排名




书目名称Extrinsic Geometry of Foliations被引频次




书目名称Extrinsic Geometry of Foliations被引频次学科排名




书目名称Extrinsic Geometry of Foliations年度引用




书目名称Extrinsic Geometry of Foliations年度引用学科排名




书目名称Extrinsic Geometry of Foliations读者反馈




书目名称Extrinsic Geometry of Foliations读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:38:27 | 显示全部楼层
发表于 2025-3-22 03:14:16 | 显示全部楼层
Rosa Muñoz-Luna,Lidia Tailleferture of a given foliation with respect to some Riemannian metric. The particular case of this quantity being identically zero (tautness) has been described separately. In the codimension-one case, the only obstructions for a scalar function to be the mean curvature of a foliation arise from Stokes’
发表于 2025-3-22 07:29:17 | 显示全部楼层
https://doi.org/10.1007/978-94-009-2177-1ntal question (similar to the question on existence of canonical metrics on a manifold) reads as: .? Our goal here is to examine the actions on a manifold for different types of variations. Apart from varying among all metrics, we also deal with the case when the varying metric remains fixed along t
发表于 2025-3-22 10:42:11 | 显示全部楼层
Vladimir Rovenski,Paweł WalczakProblems of prescribing the extrinsic geometry and curvature of foliations are central to the book.Presents the state of the art in geometric and analytical theory of foliations.Designed for newcomers
发表于 2025-3-22 15:49:50 | 显示全部楼层
发表于 2025-3-22 18:34:05 | 显示全部楼层
发表于 2025-3-22 23:04:00 | 显示全部楼层
Extrinsic Geometry of Foliations978-3-030-70067-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-23 03:42:36 | 显示全部楼层
https://doi.org/10.1007/978-3-030-96486-3By . we mean the evolution of a geometric structure on a manifold under a differential equation, usually associated with curvature. These correspond to dynamical systems in the infinite-dimensional space of all appropriate geometric structures on a given manifold.
发表于 2025-3-23 08:10:14 | 显示全部楼层
Extrinsic Geometric Flows,By . we mean the evolution of a geometric structure on a manifold under a differential equation, usually associated with curvature. These correspond to dynamical systems in the infinite-dimensional space of all appropriate geometric structures on a given manifold.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 17:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表