书目名称 | Exterior Differential Systems and the Calculus of Variations |
编辑 | Phillip A. Griffiths |
视频video | |
丛书名称 | Progress in Mathematics |
图书封面 |  |
描述 | 15 0. PRELIMINARIES a) Notations from Manifold Theory b) The Language of Jet Manifolds c) Frame Manifolds d) Differentia! Ideals e) Exterior Differential Systems EULER-LAGRANGE EQUATIONS FOR DIFFERENTIAL SYSTEMS ~liTH ONE I. 32 INDEPENDENT VARIABLE a) Setting up the Problem; Classical Examples b) Variational Equations for Integral Manifolds of Differential Systems c) Differential Systems in Good Form; the Derived Flag, Cauchy Characteristics, and Prolongation of Exterior Differential Systems d) Derivation of the Euler-Lagrange Equations; Examples e) The Euler-Lagrange Differential System; Non-Degenerate Variational Problems; Examples FIRST INTEGRALS OF THE EULER-LAGRANGE SYSTEM; NOETHER‘S II. 1D7 THEOREM AND EXAMPLES a) First Integrals and Noether‘s Theorem; Some Classical Examples; Variational Problems Algebraically Integrable by Quadratures b) Investigation of the Euler-Lagrange System for Some Differential-Geometric Variational Pro~lems: 2 i) ( K ds for Plane Curves; i i) Affine Arclength; 2 iii) f K ds for Space Curves; and iv) Delauney Problem. II I. EULER EQUATIONS FOR VARIATIONAL PROBLEfiJS IN HOMOGENEOUS SPACES 161 a) Derivation of the Equations: i) Motivation; i i) Review |
出版日期 | Book 1983 |
关键词 | Calculus of Variations; integral; manifold; variational problem |
版次 | 1 |
doi | https://doi.org/10.1007/978-1-4615-8166-6 |
isbn_softcover | 978-0-8176-3103-1 |
isbn_ebook | 978-1-4615-8166-6Series ISSN 0743-1643 Series E-ISSN 2296-505X |
issn_series | 0743-1643 |
copyright | Springer Science+Business Media New York 1983 |