找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Explorations in Harmonic Analysis; With Applications to Steven G. Krantz Textbook 2009 Birkhäuser Boston 2009 Fourier analysis.Fourier tran

[复制链接]
楼主: papertrans
发表于 2025-3-27 00:10:32 | 显示全部楼层
https://doi.org/10.1007/978-981-99-0872-1m of P. Fatou that a . holomorphic function on the unit disk . has radial (indeed nontangential) boundary limits almost everywhere. Hardy and Riesz wished to expand the space of holomorphic functions for which such results could be obtained.
发表于 2025-3-27 02:35:20 | 显示全部楼层
The Central Idea: The Hilbert Transform,intertwined in profound and influential ways. What it all comes down to is that there is only one singular integral in dimension 1, and it is the Hilbert transform. The philosophy is that all significant analytic questions reduce to a singular integral; and in the first dimension there is just one choice.
发表于 2025-3-27 07:45:48 | 显示全部楼层
Pseudoconvexity and Domains of Holomorphy,al geometric condition on the boundary. The second is an idea that comes strictly from function theory. The big result in the subject—the solution of the Levi problem—is that these two conditions are equivalent.
发表于 2025-3-27 12:57:50 | 显示全部楼层
发表于 2025-3-27 13:56:55 | 显示全部楼层
发表于 2025-3-27 21:26:08 | 显示全部楼层
发表于 2025-3-28 00:00:38 | 显示全部楼层
Canonical Complex Integral Operators,lmay be discovered naturally by way of power series considerations, or partial differential equations considerations, or conformality considerations. The Poisson kernel is the real part of the Cauchy kernel. It also arises naturally as the solution operator for the Dirichlet problem. It is rather mo
发表于 2025-3-28 03:02:59 | 显示全部楼层
Hardy Spaces Old and New,m of P. Fatou that a . holomorphic function on the unit disk . has radial (indeed nontangential) boundary limits almost everywhere. Hardy and Riesz wished to expand the space of holomorphic functions for which such results could be obtained.
发表于 2025-3-28 08:06:43 | 显示全部楼层
发表于 2025-3-28 11:00:08 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 08:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表