找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Exploitation of Linkage Learning in Evolutionary Algorithms; Ying-ping Chen Book 2010 Springer-Verlag Berlin Heidelberg 2010 Bayesian netw

[复制链接]
查看: 30676|回复: 43
发表于 2025-3-21 17:04:50 | 显示全部楼层 |阅读模式
书目名称Exploitation of Linkage Learning in Evolutionary Algorithms
编辑Ying-ping Chen
视频video
概述The recent progress of linkage learning.Demonstrates a new connection between optimization methodologies and natural evolution mechanisms.Written by experts in the field
丛书名称Adaptation, Learning, and Optimization
图书封面Titlebook: Exploitation of Linkage Learning in Evolutionary Algorithms;  Ying-ping Chen Book 2010 Springer-Verlag Berlin Heidelberg 2010 Bayesian netw
描述.One major branch of enhancing the performance of evolutionary algorithms is the exploitation of linkage learning. This monograph aims to capture the recent progress of linkage learning, by compiling a series of focused technical chapters to keep abreast of the developments and trends in the area of linkage. In evolutionary algorithms, linkage models the relation between decision variables with the genetic linkage observed in biological systems, and linkage learning connects computational optimization methodologies and natural evolution mechanisms. Exploitation of linkage learning can enable us to design better evolutionary algorithms as well as to potentially gain insight into biological systems. Linkage learning has the potential to become one of the dominant aspects of evolutionary algorithms; research in this area can potentially yield promising results in addressing the scalability issues. .
出版日期Book 2010
关键词Bayesian network; Evolutionary Computation; Linkage Learning; Markov; algorithm; algorithms; calculus; evol
版次1
doihttps://doi.org/10.1007/978-3-642-12834-9
isbn_softcover978-3-642-26327-9
isbn_ebook978-3-642-12834-9Series ISSN 1867-4534 Series E-ISSN 1867-4542
issn_series 1867-4534
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Exploitation of Linkage Learning in Evolutionary Algorithms影响因子(影响力)




书目名称Exploitation of Linkage Learning in Evolutionary Algorithms影响因子(影响力)学科排名




书目名称Exploitation of Linkage Learning in Evolutionary Algorithms网络公开度




书目名称Exploitation of Linkage Learning in Evolutionary Algorithms网络公开度学科排名




书目名称Exploitation of Linkage Learning in Evolutionary Algorithms被引频次




书目名称Exploitation of Linkage Learning in Evolutionary Algorithms被引频次学科排名




书目名称Exploitation of Linkage Learning in Evolutionary Algorithms年度引用




书目名称Exploitation of Linkage Learning in Evolutionary Algorithms年度引用学科排名




书目名称Exploitation of Linkage Learning in Evolutionary Algorithms读者反馈




书目名称Exploitation of Linkage Learning in Evolutionary Algorithms读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:26:09 | 显示全部楼层
https://doi.org/10.1007/978-3-319-33130-0dependent on) one another, and the performance of three basic types of genetic evolutionary algorithms (GEAs): hill climbing, genetic algorithm and bottom-up self-assembly (compositional). It explores how concepts and quantitative methods from the field of social/complex networks can be used to char
发表于 2025-3-22 03:41:50 | 显示全部楼层
发表于 2025-3-22 06:41:38 | 显示全部楼层
发表于 2025-3-22 09:28:27 | 显示全部楼层
The Relativistic Theory of Timelgorithms (EDAs). Distribution Estimation Using Markov network (DEUM) is one of the early EDAs to use this approach. Over the years, several different versions of DEUM have been proposed using different Markov network structures, and are shown to work well in a number of different optimisation probl
发表于 2025-3-22 16:42:42 | 显示全部楼层
发表于 2025-3-22 17:04:57 | 显示全部楼层
https://doi.org/10.1007/978-3-642-50696-3etic Algorithms may suffer from exponential scalability on hard problems. Estimation of Distribution Algorithms, a special class of Genetic Algorithms, can build complex models of the iterations among variables in the problem, solving several intractable problems in tractable polynomial time. Howeve
发表于 2025-3-23 00:46:35 | 显示全部楼层
Der Brückenbauer Hans-Dietrich Genscherbution model, which is latter sampled to generate the population for the next generation. This chapter introduces a new way to estimate the distribution model and sample from it according to copula theory. The multivariate joint is decomposed into the univariate margins and a function called copula.
发表于 2025-3-23 02:47:26 | 显示全部楼层
发表于 2025-3-23 07:26:42 | 显示全部楼层
,Die Zeit der großen Landesausstellungen,f Distribution Algorithm (EDA) to solve the PSP problem on HP model. Firstly, a composite fitness function containing the information of folding structure core (H-Core) is introduced to replace the traditional fitness function of HP model. The new fitness function is expected to select better indivi
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 20:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表