找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Explainable AI: Foundations, Methodologies and Applications; Mayuri Mehta,Vasile Palade ,Indranath Chatterjee Book 2023 The Editor(s) (if

[复制链接]
查看: 55180|回复: 48
发表于 2025-3-21 18:15:08 | 显示全部楼层 |阅读模式
书目名称Explainable AI: Foundations, Methodologies and Applications
编辑Mayuri Mehta,Vasile Palade ,Indranath Chatterjee
视频video
概述Written for beginners and advanced machine learning users, including engineers and researchers on AI and applications.Covers concepts such as black box models, transparency, interpretable machine lear
丛书名称Intelligent Systems Reference Library
图书封面Titlebook: Explainable AI: Foundations, Methodologies and Applications;  Mayuri Mehta,Vasile Palade	,Indranath Chatterjee Book 2023 The Editor(s) (if
描述.This book presents an overview and several applications of explainable artificial intelligence (XAI). It covers different aspects related to explainable artificial intelligence, such as the need to make the AI models interpretable, how black box machine/deep learning models can be understood using various XAI methods, different evaluation metrics for XAI, human-centered explainable AI, and applications of explainable AI in health care, security surveillance, transportation, among other areas..The book is suitable for students and academics aiming to build up their background on explainable AI and can guide them in making machine/deep learning models more transparent. The book can be used as a reference book for teaching a graduate course on artificial intelligence, applied machine learning, or neural networks. Researchers working in the area of AI can use this book to discover the recent developments in XAI. Besides its use in academia, this book could be used by practitioners in AI industries, healthcare industries, medicine, autonomous vehicles, and security surveillance, who would like to develop AI techniques and applications with explanations..
出版日期Book 2023
关键词Intelligent Systems; Artificial Intelligence; Explainable AI; Neural Networks; Deep Learning; Applied Mac
版次1
doihttps://doi.org/10.1007/978-3-031-12807-3
isbn_softcover978-3-031-12809-7
isbn_ebook978-3-031-12807-3Series ISSN 1868-4394 Series E-ISSN 1868-4408
issn_series 1868-4394
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Explainable AI: Foundations, Methodologies and Applications影响因子(影响力)




书目名称Explainable AI: Foundations, Methodologies and Applications影响因子(影响力)学科排名




书目名称Explainable AI: Foundations, Methodologies and Applications网络公开度




书目名称Explainable AI: Foundations, Methodologies and Applications网络公开度学科排名




书目名称Explainable AI: Foundations, Methodologies and Applications被引频次




书目名称Explainable AI: Foundations, Methodologies and Applications被引频次学科排名




书目名称Explainable AI: Foundations, Methodologies and Applications年度引用




书目名称Explainable AI: Foundations, Methodologies and Applications年度引用学科排名




书目名称Explainable AI: Foundations, Methodologies and Applications读者反馈




书目名称Explainable AI: Foundations, Methodologies and Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:02:19 | 显示全部楼层
Black Box Models for eXplainable Artificial Intelligence,o multiple small options for the IDS area. This chapter aims to implement the arrangement of issues labeled in the various black box methods. This survey helps the researcher to understand the classification of various black box models.
发表于 2025-3-22 03:25:18 | 显示全部楼层
发表于 2025-3-22 07:15:13 | 显示全部楼层
Methods and Metrics for Explaining Artificial Intelligence Models: A Review, For clarity on the XAI implementation stage, Pre-model, In-model, and Post-model explainability are elaborated along with the model-agnostic and model-specific techniques. The chapter concludes with a brief discussion on a simple use-case of implementing the XAI method in a real-life problem follow
发表于 2025-3-22 09:31:14 | 显示全部楼层
发表于 2025-3-22 14:37:27 | 显示全部楼层
Explainable Machine Learning for Autonomous Vehicle Positioning Using SHAP, is a safety critical one and thus requires a qualitative assessment of the reasons for the predictions of the WhONet model at any point of use. There is therefore the need to provide explanations for the WhONet’s predictions to justify its reliability and thus provide a higher level of transparency
发表于 2025-3-22 18:09:33 | 显示全部楼层
发表于 2025-3-23 00:43:02 | 显示全部楼层
发表于 2025-3-23 04:53:26 | 显示全部楼层
An Overview of Explainable AI Methods, Forms and Frameworks,
发表于 2025-3-23 08:08:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 22:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表