找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Explainable AI Recipes; Implement Solutions Pradeepta Mishra Book 2023 Pradeepta Mishra 2023 Explainable AI.Python.Artificial Intelligence

[复制链接]
查看: 26324|回复: 38
发表于 2025-3-21 16:07:48 | 显示全部楼层 |阅读模式
书目名称Explainable AI Recipes
副标题Implement Solutions
编辑Pradeepta Mishra
视频video
概述Explains the core features of XAI and how to execute them using Python frameworks.Covers interpreting supervised learning algorithms and single instance predictions with XAI.Includes best practices fo
图书封面Titlebook: Explainable AI Recipes; Implement Solutions  Pradeepta Mishra Book 2023 Pradeepta Mishra 2023 Explainable AI.Python.Artificial Intelligence
描述Understand how to use Explainable AI (XAI) libraries and build trust in AI and machine learning models. This book utilizes a problem-solution approach to explaining machine learning models and their algorithms. .The book starts with model interpretation for supervised learning linear models, which includes feature importance, partial dependency analysis, and influential data point analysis for both classification and regression models. Next, it explains supervised learning using non-linear models and state-of-the-art frameworks such as SHAP values/scores and LIME for local interpretation. Explainability for time series models is covered using LIME and SHAP, as are natural language processing-related tasks such as text classification, and sentiment analysis with ELI5, and ALIBI. The book concludes with complex model classification and regression-like neural networks and deep learning models using the CAPTUM framework that shows feature attribution, neuron attribution,and activation attribution.   .After reading this book, you will understand AI and machine learning models and be able to put that knowledge into practice to bring more accuracy and transparency to your analyses..What Y
出版日期Book 2023
关键词Explainable AI; Python; Artificial Intelligence; Linaer Supervised Model; Non Linear Supervised Model; En
版次1
doihttps://doi.org/10.1007/978-1-4842-9029-3
isbn_softcover978-1-4842-9028-6
isbn_ebook978-1-4842-9029-3
copyrightPradeepta Mishra 2023
The information of publication is updating

书目名称Explainable AI Recipes影响因子(影响力)




书目名称Explainable AI Recipes影响因子(影响力)学科排名




书目名称Explainable AI Recipes网络公开度




书目名称Explainable AI Recipes网络公开度学科排名




书目名称Explainable AI Recipes被引频次




书目名称Explainable AI Recipes被引频次学科排名




书目名称Explainable AI Recipes年度引用




书目名称Explainable AI Recipes年度引用学科排名




书目名称Explainable AI Recipes读者反馈




书目名称Explainable AI Recipes读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:20:53 | 显示全部楼层
Explainability for Deep Learning Models,uch as audio processing, text classification, etc.; deep neural networks, which are used for building extremely deep networks; and finally, convolutional neural network models, which are used for image classification.
发表于 2025-3-22 01:58:47 | 显示全部楼层
发表于 2025-3-22 06:11:31 | 显示全部楼层
发表于 2025-3-22 12:22:36 | 显示全部楼层
https://doi.org/10.1007/978-3-030-19175-7 number of features for a machine learning task increases or the volume of data increases, then it takes a lot of time to apply machine learning techniques. That’s when deep learning techniques are used.
发表于 2025-3-22 13:13:59 | 显示全部楼层
Introducing Explainability and Setting Up Your Development Environment, number of features for a machine learning task increases or the volume of data increases, then it takes a lot of time to apply machine learning techniques. That’s when deep learning techniques are used.
发表于 2025-3-22 17:06:57 | 显示全部楼层
发表于 2025-3-22 21:55:41 | 显示全部楼层
Mirjana Pavlovic,John Mayfield,Bela Balint business to plan better and will help decision-makers to plan according to the future estimations. There are machine learning–based techniques that can be applied to generate future forecasting; also, there is a need to explain the predictions about the future.
发表于 2025-3-23 03:32:41 | 显示全部楼层
发表于 2025-3-23 05:53:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 15:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表