找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolutionary Multiobjective Optimization; Theoretical Advances Ajith Abraham,Lakhmi Jain,Robert Goldberg Book 2005 Springer-Verlag London 2

[复制链接]
查看: 23471|回复: 35
发表于 2025-3-21 16:31:44 | 显示全部楼层 |阅读模式
书目名称Evolutionary Multiobjective Optimization
副标题Theoretical Advances
编辑Ajith Abraham,Lakhmi Jain,Robert Goldberg
视频videohttp://file.papertrans.cn/318/317991/317991.mp4
概述Offers the first-ever comprehensive treatment of the developmental as well as application aspects of the "cutting edge” field of evolutionary computation based multi-criteria optimisation.The only vol
丛书名称Advanced Information and Knowledge Processing
图书封面Titlebook: Evolutionary Multiobjective Optimization; Theoretical Advances Ajith Abraham,Lakhmi Jain,Robert Goldberg Book 2005 Springer-Verlag London 2
描述.Evolutionary Multiobjective Optimization. is a rare collection of the latest state-of-the-art theoretical research, design challenges and applications in the field of multiobjective optimization paradigms using evolutionary algorithms. It includes two introductory chapters giving all the fundamental definitions, several complex test functions and a practical problem involving the multiobjective optimization of space structures under static and seismic loading conditions used to illustrate the various multiobjective optimization concepts. ..Important features include:...Detailed overview of all the multiobjective optimization paradigms using evolutionary algorithms..Excellent coverage of timely, advanced multiobjective optimization topics..State-of-the-art theoretical research and application developments..Chapters authored by pioneers in the field ..Academics and industrial scientists as well as engineers engaged in research, development and application of evolutionary algorithm based Multiobjective Optimization will find the comprehensive coverage of this book invaluable..
出版日期Book 2005
关键词Computer; Data Structures; Genetic Algorithms; Multi-Criteria Optimization; algorithms; automata; evolutio
版次1
doihttps://doi.org/10.1007/1-84628-137-7
isbn_softcover978-1-84996-916-1
isbn_ebook978-1-84628-137-2Series ISSN 1610-3947 Series E-ISSN 2197-8441
issn_series 1610-3947
copyrightSpringer-Verlag London 2005
The information of publication is updating

书目名称Evolutionary Multiobjective Optimization影响因子(影响力)




书目名称Evolutionary Multiobjective Optimization影响因子(影响力)学科排名




书目名称Evolutionary Multiobjective Optimization网络公开度




书目名称Evolutionary Multiobjective Optimization网络公开度学科排名




书目名称Evolutionary Multiobjective Optimization被引频次




书目名称Evolutionary Multiobjective Optimization被引频次学科排名




书目名称Evolutionary Multiobjective Optimization年度引用




书目名称Evolutionary Multiobjective Optimization年度引用学科排名




书目名称Evolutionary Multiobjective Optimization读者反馈




书目名称Evolutionary Multiobjective Optimization读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:45:32 | 显示全部楼层
Experimenting with Raspberry Piing. In this introductory chapter, some fundamental concepts of multiobjective optimization are introduced, emphasizing the motivation and advantages of using evolutionary algorithms. We then lay out the important contributions of the remaining chapters of this volume.
发表于 2025-3-22 01:38:27 | 显示全部楼层
发表于 2025-3-22 05:26:40 | 显示全部楼层
发表于 2025-3-22 08:50:25 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-6635-3uctures are evaluated and compared on several multiobjective example problems. The results presented show that typically, linear lists perform better for small population sizes and higher-dimensional Pareto fronts (large archives) whereas Quad-trees perform better for larger population sizes and Pareto sets of small cardinality.
发表于 2025-3-22 15:14:46 | 显示全部楼层
Quad-trees: A Data Structure for Storing Pareto Sets in Multiobjective Evolutionary Algorithms withuctures are evaluated and compared on several multiobjective example problems. The results presented show that typically, linear lists perform better for small population sizes and higher-dimensional Pareto fronts (large archives) whereas Quad-trees perform better for larger population sizes and Pareto sets of small cardinality.
发表于 2025-3-22 20:10:02 | 显示全部楼层
The Transformative Power of Action Research,over to the multiobjective case, if a simple dominance-based selection scheme is used. As a solution, a combined strategy is proposed using dominance-based selection in the archive and scalarizing functions in the working population.
发表于 2025-3-22 21:48:28 | 显示全部楼层
发表于 2025-3-23 03:52:33 | 显示全部楼层
Self-adaptation and Convergence of Multiobjective Evolutionary Algorithms in Continuous Search Spacover to the multiobjective case, if a simple dominance-based selection scheme is used. As a solution, a combined strategy is proposed using dominance-based selection in the archive and scalarizing functions in the working population.
发表于 2025-3-23 07:12:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-6 18:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表