找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolutionary Multi-Criterion Optimization; 10th International C Kalyanmoy Deb,Erik Goodman,Patrick Reed Conference proceedings 2019 Springe

[复制链接]
查看: 47068|回复: 60
发表于 2025-3-21 16:53:23 | 显示全部楼层 |阅读模式
书目名称Evolutionary Multi-Criterion Optimization
副标题10th International C
编辑Kalyanmoy Deb,Erik Goodman,Patrick Reed
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Evolutionary Multi-Criterion Optimization; 10th International C Kalyanmoy Deb,Erik Goodman,Patrick Reed Conference proceedings 2019 Springe
描述This book constitutes the refereed proceedings of the 10th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2019 held in East Lansing, MI, USA, in March 2019..The 59 revised full papers were carefully reviewed and selected from 76 submissions. The papers are divided into 8 categories, each representing a key area of current interest in the EMO field today. They include theoretical developments, algorithmic developments, issues in many-objective optimization, performance metrics, knowledge extraction and surrogate-based EMO, multi-objective combinatorial problem solving, MCDM and interactive EMO methods, and applications..
出版日期Conference proceedings 2019
关键词artificial intelligence; computer networks; evolutionary algorithms; evolutionary computation; evolution
版次1
doihttps://doi.org/10.1007/978-3-030-12598-1
isbn_softcover978-3-030-12597-4
isbn_ebook978-3-030-12598-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Evolutionary Multi-Criterion Optimization影响因子(影响力)




书目名称Evolutionary Multi-Criterion Optimization影响因子(影响力)学科排名




书目名称Evolutionary Multi-Criterion Optimization网络公开度




书目名称Evolutionary Multi-Criterion Optimization网络公开度学科排名




书目名称Evolutionary Multi-Criterion Optimization被引频次




书目名称Evolutionary Multi-Criterion Optimization被引频次学科排名




书目名称Evolutionary Multi-Criterion Optimization年度引用




书目名称Evolutionary Multi-Criterion Optimization年度引用学科排名




书目名称Evolutionary Multi-Criterion Optimization读者反馈




书目名称Evolutionary Multi-Criterion Optimization读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:24:14 | 显示全部楼层
https://doi.org/10.1007/978-3-658-33711-7MOPs. Our proposed approach is evaluated on 22 NESs with different features, such as linear and nonlinear equations, different numbers of optimal solutions, and infinite optimal solutions. Experimental results reveal that the proposed approach is highly competitive with some other state-of-the-art algorithms for NES.
发表于 2025-3-22 04:12:45 | 显示全部楼层
发表于 2025-3-22 05:37:13 | 显示全部楼层
On the Convergence of Decomposition Algorithms in Many-Objective Problemshe sequences obtained from Euclidean norm decomposition may be adjusted such that an asymptotic convergence is achieved. Explanations for those different convergence behaviors are obtained from recently developed analytical tools.
发表于 2025-3-22 12:23:32 | 显示全部楼层
发表于 2025-3-22 14:19:29 | 显示全部楼层
发表于 2025-3-22 17:33:32 | 显示全部楼层
0302-9743 eld in East Lansing, MI, USA, in March 2019..The 59 revised full papers were carefully reviewed and selected from 76 submissions. The papers are divided into 8 categories, each representing a key area of current interest in the EMO field today. They include theoretical developments, algorithmic devel
发表于 2025-3-23 01:16:19 | 显示全部楼层
发表于 2025-3-23 04:48:29 | 显示全部楼层
Experimentelle Pflanzensoziologieront. Finally, we integrate the proposed metric with two recent algorithms and apply it on several multi and many-objective optimization problems. Results show that B-KKTPM can be used as a termination condition for an Evolutionary Multi-objective Optimization (EMO) approach.
发表于 2025-3-23 08:04:33 | 显示全部楼层
Evolutionary Multi-objective Optimization Using Benson’s Karush-Kuhn-Tucker Proximity Measureront. Finally, we integrate the proposed metric with two recent algorithms and apply it on several multi and many-objective optimization problems. Results show that B-KKTPM can be used as a termination condition for an Evolutionary Multi-objective Optimization (EMO) approach.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-30 12:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表