找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolutionary Multi-Criterion Optimization; Second International Carlos M. Fonseca,Peter J. Fleming,Kalyanmoy Deb Conference proceedings 200

[复制链接]
查看: 52730|回复: 65
发表于 2025-3-21 19:30:10 | 显示全部楼层 |阅读模式
书目名称Evolutionary Multi-Criterion Optimization
副标题Second International
编辑Carlos M. Fonseca,Peter J. Fleming,Kalyanmoy Deb
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Evolutionary Multi-Criterion Optimization; Second International Carlos M. Fonseca,Peter J. Fleming,Kalyanmoy Deb Conference proceedings 200
出版日期Conference proceedings 2003
关键词Adaptation; algorithms; evolution; evolutionary algorithms; genetic algorithms; heuristics; multi-criteria
版次1
doihttps://doi.org/10.1007/3-540-36970-8
isbn_softcover978-3-540-01869-8
isbn_ebook978-3-540-36970-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

书目名称Evolutionary Multi-Criterion Optimization影响因子(影响力)




书目名称Evolutionary Multi-Criterion Optimization影响因子(影响力)学科排名




书目名称Evolutionary Multi-Criterion Optimization网络公开度




书目名称Evolutionary Multi-Criterion Optimization网络公开度学科排名




书目名称Evolutionary Multi-Criterion Optimization被引频次




书目名称Evolutionary Multi-Criterion Optimization被引频次学科排名




书目名称Evolutionary Multi-Criterion Optimization年度引用




书目名称Evolutionary Multi-Criterion Optimization年度引用学科排名




书目名称Evolutionary Multi-Criterion Optimization读者反馈




书目名称Evolutionary Multi-Criterion Optimization读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:04:29 | 显示全部楼层
Social Influence on Sexual Constructs,t and effcient parent and archive update strategies. Based on a comparative study on a number of two and three objective test problems, it is observed that the steady-state MOEA achieves a comparable distribution to the clustered NSGA-II with a much less computational time.
发表于 2025-3-22 03:33:39 | 显示全部楼层
https://doi.org/10.1007/978-3-031-02192-3arbitrary precision to the Pareto front. We exploit this property and propose a novel algorithm to increase their convergence speed by introducing suitable self-adaptive mutation. This adaptive mutation takes into account the distance to the Pareto front. All algorithms are analyzed on a 2- and 3-objective test function.
发表于 2025-3-22 07:12:18 | 显示全部楼层
Is Fitness Inheritance Useful for Real-World Applications?well-known test suite of multiple objective optimization problems. These problems have been generated as to constitute a collection of test cases for genetic algorithms. Results show that fitness inheritance can only be applied to convex and continuous problems.
发表于 2025-3-22 12:38:24 | 显示全部楼层
发表于 2025-3-22 15:19:58 | 显示全部楼层
Self-Adaptation for Multi-objective Evolutionary Algorithmsarbitrary precision to the Pareto front. We exploit this property and propose a novel algorithm to increase their convergence speed by introducing suitable self-adaptive mutation. This adaptive mutation takes into account the distance to the Pareto front. All algorithms are analyzed on a 2- and 3-objective test function.
发表于 2025-3-22 19:33:49 | 显示全部楼层
发表于 2025-3-23 00:03:33 | 显示全部楼层
发表于 2025-3-23 03:09:48 | 显示全部楼层
https://doi.org/10.1007/978-1-137-12209-4ve grid as the original PAES (Pareto Archived Evolution Strategy). However, the adaptive grid of IS-PAES does not have the serious scalability problems of the original PAES. The proposed constraint-handling approach is validated with several examples taken from the standard literature on evolutionary optimization.
发表于 2025-3-23 06:40:20 | 显示全部楼层
Experience first – Marken erlebbar machenonary optimisers, which uses concepts from parallel evolutionary algorithms and nonparametric statistics. The method is evaluated both quantitatively and qualitatively using a rigorous experimental framework. Proof-of-principle results confirm the potential of the adaptive divide-and-conquer strategy.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 00:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表