找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolutionary Decision Trees in Large-Scale Data Mining; Marek Kretowski Book 2019 Springer Nature Switzerland AG 2019 Evolutionary Computa

[复制链接]
查看: 14028|回复: 42
发表于 2025-3-21 16:58:02 | 显示全部楼层 |阅读模式
书目名称Evolutionary Decision Trees in Large-Scale Data Mining
编辑Marek Kretowski
视频video
概述Sums up the authors research conducted over the last 15 years on the evolutionary induction of decision trees.Discusses some basic elements from three domains are discussed, all of which are necessary
丛书名称Studies in Big Data
图书封面Titlebook: Evolutionary Decision Trees in Large-Scale Data Mining;  Marek Kretowski Book 2019 Springer Nature Switzerland AG 2019 Evolutionary Computa
描述.This book presents a unified framework, based on specialized evolutionary algorithms, for the global induction of various types of classification and regression trees from data. The resulting univariate or oblique trees are significantly smaller than those produced by standard top-down methods, an aspect that is critical for the interpretation of mined patterns by domain analysts. The approach presented here is extremely flexible and can easily be adapted to specific data mining applications, e.g. cost-sensitive model trees for financial data or multi-test trees for gene expression data. The global induction can be efficiently applied to large-scale data without the need for extraordinary resources. With a simple GPU-based acceleration, datasets composed of millions of instances can be mined in minutes. In the event that the size of the datasets makes the fastest memory computing impossible, the Spark-based implementation on computer clusters, which offers impressive fault tolerance and scalability potential, can be applied. .
出版日期Book 2019
关键词Evolutionary Computation; Decision Trees; Distributed Computing; Evolutionary Induction of Decision Tre
版次1
doihttps://doi.org/10.1007/978-3-030-21851-5
isbn_softcover978-3-030-21853-9
isbn_ebook978-3-030-21851-5Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Evolutionary Decision Trees in Large-Scale Data Mining影响因子(影响力)




书目名称Evolutionary Decision Trees in Large-Scale Data Mining影响因子(影响力)学科排名




书目名称Evolutionary Decision Trees in Large-Scale Data Mining网络公开度




书目名称Evolutionary Decision Trees in Large-Scale Data Mining网络公开度学科排名




书目名称Evolutionary Decision Trees in Large-Scale Data Mining被引频次




书目名称Evolutionary Decision Trees in Large-Scale Data Mining被引频次学科排名




书目名称Evolutionary Decision Trees in Large-Scale Data Mining年度引用




书目名称Evolutionary Decision Trees in Large-Scale Data Mining年度引用学科排名




书目名称Evolutionary Decision Trees in Large-Scale Data Mining读者反馈




书目名称Evolutionary Decision Trees in Large-Scale Data Mining读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:39:40 | 显示全部楼层
发表于 2025-3-22 00:41:54 | 显示全部楼层
2197-6503 ze of the datasets makes the fastest memory computing impossible, the Spark-based implementation on computer clusters, which offers impressive fault tolerance and scalability potential, can be applied. .978-3-030-21853-9978-3-030-21851-5Series ISSN 2197-6503 Series E-ISSN 2197-6511
发表于 2025-3-22 05:02:04 | 显示全部楼层
发表于 2025-3-22 12:39:44 | 显示全部楼层
发表于 2025-3-22 16:53:32 | 显示全部楼层
发表于 2025-3-22 18:47:12 | 显示全部楼层
发表于 2025-3-23 01:10:19 | 显示全部楼层
https://doi.org/10.1007/978-3-030-21851-5Evolutionary Computation; Decision Trees; Distributed Computing; Evolutionary Induction of Decision Tre
发表于 2025-3-23 03:12:14 | 显示全部楼层
发表于 2025-3-23 08:27:51 | 显示全部楼层
Evolutionary ComputationA lot of typical problems that have to be commonly solved in engineering or business can be formulated as optimization problems. The performance of an activity or the value of a decision are characterized by a certain cost function, and here, possible alternatives are considered.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 05:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表