找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolutionary Algorithms and Neural Networks; Theory and Applicati Seyedali Mirjalili Book 2019 Springer International Publishing AG, part o

[复制链接]
楼主: abandon
发表于 2025-3-25 05:01:57 | 显示全部楼层
Evolutionary Algorithms and Neural Networks978-3-319-93025-1Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-25 08:23:17 | 显示全部楼层
发表于 2025-3-25 13:10:38 | 显示全部楼层
发表于 2025-3-25 17:08:04 | 显示全部楼层
https://doi.org/10.1007/978-3-322-92630-2Ant Colony Optimisation (ACO) is one of the well-known swarm intelligence techniques in the literature. This chapter discusses the inspiration and mathematical model of several valiants of this algorithm. To analyse the performance of ACO, it is applied to several Travailing Salesman Problem (TSP).
发表于 2025-3-25 23:32:10 | 显示全部楼层
Deutsches Zentrum für AltersfragenGenetic Algorithm (GA) is one of the first population-based stochastic algorithm proposed in the history. Similar to other EAs, the main operators of GA are selection, crossover, and mutation. This chapter briefly presents this algorithm and applies it to several case studies to observe its performance.
发表于 2025-3-26 02:25:29 | 显示全部楼层
Prozess der Implementierung und Umsetzung,Feedforward Neural Networks (FNN) have been of the most popular NNs with a wide range of applications. The process of finding optimal values for controlling parameters of a NN is called training and can be considered as an optimisation problem. This chapter trains FNNs using several optimisation algorithms.
发表于 2025-3-26 07:17:00 | 显示全部楼层
发表于 2025-3-26 09:47:12 | 显示全部楼层
发表于 2025-3-26 16:18:15 | 显示全部楼层
发表于 2025-3-26 17:39:11 | 显示全部楼层
Ant Colony OptimisationAnt Colony Optimisation (ACO) is one of the well-known swarm intelligence techniques in the literature. This chapter discusses the inspiration and mathematical model of several valiants of this algorithm. To analyse the performance of ACO, it is applied to several Travailing Salesman Problem (TSP).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 07:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表