找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolution in Computational Intelligence; Proceedings of the 1 Vikrant Bhateja,Xin-She Yang,Ranjita Das Conference proceedings 2023 The Edit

[复制链接]
楼主: VERSE
发表于 2025-3-23 13:32:33 | 显示全部楼层
,Prediction of Air Quality Using Machine Learning,These experiments successfully resolve limitations like data instability, overfitting, and multicollinearity. RFR, XGBoost, and ANN perform better and help to resolve air prediction issues, and specifically, ANN outperforms all. Results and discussion of this paper provide a holistic view of methods
发表于 2025-3-23 16:03:34 | 显示全部楼层
发表于 2025-3-23 19:30:47 | 显示全部楼层
发表于 2025-3-24 00:32:10 | 显示全部楼层
Romy Escher,Melanie Walter-Roggdes two pipelines and an ensemble method. In the first pipeline, YOLOv5 and EfficientNet are used. In second pipeline, the Faster R-CNN model is used. Through the Weighted box fusion method, the fused predictions are created from pipeline results. The final detection results illustrate confidence sc
发表于 2025-3-24 03:39:00 | 显示全部楼层
发表于 2025-3-24 07:22:16 | 显示全部楼层
Environmental Philosophy of Buddhism,is tested on MURA dataset, a large public dataset provided by Stanford ML Group. Our model achieved a cohen’s kappa score 0.739 with precision of 0.885 and recall of 0.854, which is higher than many existing approaches such as densenet169 and ensemble200 model.
发表于 2025-3-24 14:19:49 | 显示全部楼层
发表于 2025-3-24 18:28:47 | 显示全部楼层
Gottfried Grabner,Claire Richard methods for Indian vehicle number plates. While the usage of deep learning models for generation of training data has been reported with success, it further limits the interpretability of the overall solution by adding another deep neural network in the ANPR system pipeline (Linardatos et al. in En
发表于 2025-3-24 20:22:02 | 显示全部楼层
发表于 2025-3-25 02:59:19 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 00:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表