找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolution in Computational Intelligence; Proceedings of the 1 Vikrant Bhateja,Xin-She Yang,Carlos M. Travieso-Go Conference proceedings 202

[复制链接]
查看: 11798|回复: 65
发表于 2025-3-21 16:08:45 | 显示全部楼层 |阅读模式
书目名称Evolution in Computational Intelligence
副标题Proceedings of the 1
编辑Vikrant Bhateja,Xin-She Yang,Carlos M. Travieso-Go
视频video
概述Presents research works in intelligent data engineering and analytics.Provides results of FICTA 2023 held at Cardiff Metropolitan University, UK.Serves as a reference for researchers and practitioners
丛书名称Smart Innovation, Systems and Technologies
图书封面Titlebook: Evolution in Computational Intelligence; Proceedings of the 1 Vikrant Bhateja,Xin-She Yang,Carlos M. Travieso-Go Conference proceedings 202
描述.The book presents the proceedings of the 11th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2023), held at Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, Wales, UK, during April 11–12, 2023. Researchers, scientists, engineers, and practitioners exchange new ideas and experiences in the domain of intelligent computing theories with prospective applications in various engineering disciplines in the book. This book is divided into two volumes. It covers broad areas of information and decision sciences, with papers exploring both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management and networks, sensor networks, signal processing, wireless networks, protocols, and architectures. This book is a valuable resource for postgraduate students in various engineering disciplines..
出版日期Conference proceedings 2023
关键词Computational Intelligence; Intelligent Control; Internet Security; Web Intelligence and Computing; FICT
版次1
doihttps://doi.org/10.1007/978-981-99-6702-5
isbn_softcover978-981-99-6704-9
isbn_ebook978-981-99-6702-5Series ISSN 2190-3018 Series E-ISSN 2190-3026
issn_series 2190-3018
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Evolution in Computational Intelligence影响因子(影响力)




书目名称Evolution in Computational Intelligence影响因子(影响力)学科排名




书目名称Evolution in Computational Intelligence网络公开度




书目名称Evolution in Computational Intelligence网络公开度学科排名




书目名称Evolution in Computational Intelligence被引频次




书目名称Evolution in Computational Intelligence被引频次学科排名




书目名称Evolution in Computational Intelligence年度引用




书目名称Evolution in Computational Intelligence年度引用学科排名




书目名称Evolution in Computational Intelligence读者反馈




书目名称Evolution in Computational Intelligence读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:03:38 | 显示全部楼层
发表于 2025-3-22 01:30:36 | 显示全部楼层
Victor Alencar Mayer Feitosa Venturaf machine translation reduces the stylometric identification performances, but preserves some characteristics of the author, which makes the identification still possible even after translation. The accuracy of authorship attribution, with 100 authors, on the translated documents is about 80% of cor
发表于 2025-3-22 06:19:12 | 显示全部楼层
发表于 2025-3-22 09:25:13 | 显示全部楼层
Environmental Justice in the New Millennium (IoU, Jaccard Index), and dice coefficient (.1 Score). Overfitting is one of the main issues with this methodology, which we were able to minimize through depth-wise model pruning and hyperparameter tuning. Finally, we achieved the Xception-Efficientb0 pair as knowledge distillation which can outpe
发表于 2025-3-22 13:51:57 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-0565-9ction system with Random Forest, AdaBoost, and LGBM ensemble models combined with a soft voting scheme as an improvement to currently employed models. The proposed model achieves an accuracy of 99.9% and a low false positive rate of 0.14 on the NSL-KDD benchmark dataset, with similar results on UNSW
发表于 2025-3-22 19:07:24 | 显示全部楼层
发表于 2025-3-22 22:54:13 | 显示全部楼层
Uncertainty Modelling of Resistance,ltiple linear regression and long short-term memory (LSTM) have been employed for predicting rainfall from temperature and precipitation data. The inter-dependency of other weather parameters is also observed in this paper relating to rainfall prediction. The accuracy of the prediction models using
发表于 2025-3-23 03:19:20 | 显示全部楼层
Secular variation magnetostratigraphy, environment module of the RLAS uses the reward function to evaluate the output generated from the agent module. If the agent module correctly identifies all the students presented in the frames captured by the camera, then the reward function marks the attendance to those students. Else, the enviro
发表于 2025-3-23 06:55:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 09:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表