找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolution Processes and the Feynman-Kac Formula; Brian Jefferies Book 1996 Springer Science+Business Media Dordrecht 1996 Feynman-Kac form

[复制链接]
楼主: EXTRA
发表于 2025-3-25 04:12:30 | 显示全部楼层
发表于 2025-3-25 08:12:52 | 显示全部楼层
https://doi.org/10.1007/978-3-322-89173-0l operators .., . = ±1, ±2,..., acting on ..((0, ∞); ℂ.). The first order part of .. looks similar to the generator of the direct sum of translations in each component of . ∈ ..((0, ∞); ℂ.). The part of order zero has a 1/.-singularity at . = 0.
发表于 2025-3-25 13:44:55 | 显示全部楼层
Evolution Processes, measured by a collection of operator valued set functions that may or may not be .-additive. Typically, the set functions are constructed from a semigroup representing the undisturbed evolution of a system, and a spectral measure by which perturbations are implemented.
发表于 2025-3-25 18:41:17 | 显示全部楼层
发表于 2025-3-25 22:35:44 | 显示全部楼层
Integration with respect to Unbounded Set Functions,〈..〉. to be operator valued measures, that is, set functions defined on a .-algebra of sets, .-additive for the strong operator topology. One obstacle that arises is that for . > 0, the set function .. may not be bounded on the algebra generated by basic events before time ..
发表于 2025-3-26 01:02:30 | 显示全部楼层
The Radial Dirac Process,l operators .., . = ±1, ±2,..., acting on ..((0, ∞); ℂ.). The first order part of .. looks similar to the generator of the direct sum of translations in each component of . ∈ ..((0, ∞); ℂ.). The part of order zero has a 1/.-singularity at . = 0.
发表于 2025-3-26 06:04:58 | 显示全部楼层
Mathematics and Its Applicationshttp://image.papertrans.cn/e/image/317658.jpg
发表于 2025-3-26 12:10:32 | 显示全部楼层
发表于 2025-3-26 14:40:27 | 显示全部楼层
Entscheidungstheoretische PlanungThe mathematical description of an evolving physical system must formulate two fundamental aspects of physical reasoning—a description of the dynamics of the system and a method for making observations.
发表于 2025-3-26 19:53:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 14:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表