找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolution Equations of Hyperbolic and Schrödinger Type; Asymptotics, Estimat Michael Ruzhansky,Mitsuru Sugimoto,Jens Wirth Book 2012 Spring

[复制链接]
楼主: Addiction
发表于 2025-3-25 07:18:22 | 显示全部楼层
Local in Space Energy Estimates for Second-order Hyperbolic Equations,The second part of the paper is devoted to the Cauchy problem for the second-order linear hyperbolic equations. For these equations, we are in the position to get an energy estimate along the cones of determinacy, which will imply, for the corresponding semilinear equations, the analytic propagation
发表于 2025-3-25 08:59:30 | 显示全部楼层
The Final Problem on the Optimality of the General Theory for Nonlinear Wave Equations,
发表于 2025-3-25 14:45:40 | 显示全部楼层
Evolution Equations of Hyperbolic and Schrödinger TypeAsymptotics, Estimat
发表于 2025-3-25 16:57:57 | 显示全部楼层
发表于 2025-3-25 20:26:50 | 显示全部楼层
发表于 2025-3-26 02:53:10 | 显示全部楼层
What Happens in the Start-up Process?,lar, we focus on Schrödinger-type FIOs, showing that Gabor frames provide optimally sparse representations of such operators. Using Maple software, new numerical examples for the Harmonic Oscillator are provided.
发表于 2025-3-26 05:07:33 | 显示全部楼层
发表于 2025-3-26 10:36:25 | 显示全部楼层
发表于 2025-3-26 13:57:52 | 显示全部楼层
Evolution Equations of Hyperbolic and Schrödinger Type978-3-0348-0454-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-26 18:29:52 | 显示全部楼层
https://doi.org/10.1007/978-3-319-75907-4cients . are assumed to be bounded and . is assumed to be uniformly elliptic and to coincide with −∆ outside of a ball. A Limiting Absorption Principle (LAP) is proved in the framework of weighted Sobolev spaces. It is then used for (i) A general eigenfunction expansion theorem and (ii) Global space
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 10:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表