找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Event Attendance Prediction in Social Networks; Xiaomei Zhang,Guohong Cao Book 2021 The Author(s), under exclusive license to Springer Nat

[复制链接]
查看: 43105|回复: 41
发表于 2025-3-21 17:00:24 | 显示全部楼层 |阅读模式
书目名称Event Attendance Prediction in Social Networks
编辑Xiaomei Zhang,Guohong Cao
视频video
概述Predicts event attendance with machine learning techniques.Provides a comprehensive guide for predicting event attendance using real data sets.Introduces a context-aware data mining approach to predic
丛书名称SpringerBriefs in Statistics
图书封面Titlebook: Event Attendance Prediction in Social Networks;  Xiaomei Zhang,Guohong Cao Book 2021 The Author(s), under exclusive license to Springer Nat
描述.This volume focuses on predicting users’ attendance at a future event at specific time and location based on their common interests. Event attendance prediction has attracted considerable attention because of its wide range of potential applications. By predicting event attendance, events that better fit users’ interests can be recommended, and personalized location-based or topic-based services related to the events can be provided to users. Moreover, it can help event organizers estimating the event scale, identifying conflicts, and help manage resources. This book first surveys existing techniques on event attendance prediction and other related topics in event-based social networks. It then introduces a context-aware data mining approach to predict the event attendance by learning how users are likely to attend future events. Specifically, three sets of context-aware attributes are identified by analyzing users’ past activities, including semantic, temporal, and spatial attributes. This book illustrates how these attributes can be applied for event attendance prediction by incorporating them into supervised learning models, and demonstrates their effectiveness through a real-w
出版日期Book 2021
关键词data mining; mobile networks; supervised learning models; mobility prediction; event attendance predicti
版次1
doihttps://doi.org/10.1007/978-3-030-89262-3
isbn_softcover978-3-030-89261-6
isbn_ebook978-3-030-89262-3Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2021
The information of publication is updating

书目名称Event Attendance Prediction in Social Networks影响因子(影响力)




书目名称Event Attendance Prediction in Social Networks影响因子(影响力)学科排名




书目名称Event Attendance Prediction in Social Networks网络公开度




书目名称Event Attendance Prediction in Social Networks网络公开度学科排名




书目名称Event Attendance Prediction in Social Networks被引频次




书目名称Event Attendance Prediction in Social Networks被引频次学科排名




书目名称Event Attendance Prediction in Social Networks年度引用




书目名称Event Attendance Prediction in Social Networks年度引用学科排名




书目名称Event Attendance Prediction in Social Networks读者反馈




书目名称Event Attendance Prediction in Social Networks读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:14:36 | 显示全部楼层
Related Work,tion, the initial discussion centers around this topic. Existing works on short-term mobility prediction and long-term mobility prediction are reviewed. Then, we survey related work on event-based social networks, with focuses on recommendation systems and event attendance prediction.
发表于 2025-3-22 01:18:23 | 显示全部楼层
发表于 2025-3-22 07:26:08 | 显示全部楼层
Event Attendance Prediction: Attributes,ds to predict the event attendance. This chapter focuses on identifying the context-aware attributes. The definition of context-aware attributes requires analysis of past events with similar topics. Therefore, we first present a semantic analysis method to calculate the semantic similarity between e
发表于 2025-3-22 11:54:12 | 显示全部楼层
发表于 2025-3-22 13:36:20 | 显示全部楼层
Performance Evaluations,of the proposed solutions and evaluate how different parameters affect the performances. In this chapter, we first discuss the data selection, the experiment setting, and then present the evaluation results on the effectiveness of individual attributes and the performance of the three classifiers.
发表于 2025-3-22 19:26:35 | 显示全部楼层
发表于 2025-3-23 00:40:35 | 显示全部楼层
978-3-030-89261-6The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
发表于 2025-3-23 03:55:25 | 显示全部楼层
发表于 2025-3-23 07:41:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-2 09:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表