找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Euro-Par 2021: Parallel Processing Workshops; Euro-Par 2021 Intern Ricardo Chaves,Dora B. Heras,Laura Ricci Conference proceedings 2022 Spr

[复制链接]
楼主: AMUSE
发表于 2025-3-26 21:53:13 | 显示全部楼层
发表于 2025-3-27 03:51:08 | 显示全部楼层
https://doi.org/10.1007/978-3-663-09711-2nd discuss the results of evaluation which includes autonomous management of a sample application deployed to Amazon Web Services cloud. We also provide the details of training of the management policy using the Proximal Policy Optimization algorithm. Finally, we discuss the feasibility to extend the presented approach to further scenarios.
发表于 2025-3-27 08:14:15 | 显示全部楼层
发表于 2025-3-27 11:13:27 | 显示全部楼层
发表于 2025-3-27 15:15:31 | 显示全部楼层
https://doi.org/10.1007/978-3-662-48862-1application employing five heterogeneous processors that include two Intel multicore CPUs, an Nvidia K40c GPU, an Nvidia P100 PCIe GPU, and an Intel Xeon Phi. Based on our experiments, a dynamic energy saving of 17% is gained while tolerating a performance degradation of 5% (a saving of 106 J for an execution time increase of 0.05 s).
发表于 2025-3-27 21:27:35 | 显示全部楼层
https://doi.org/10.1007/978-3-662-31582-8n, or even precompiled OpenCL applications, could utilize the optimization. Despite the lack of explicit programmer effort, our compiler was able to deliver an average of 12.3% speedup over a range of applicable benchmarks on a target CPU platform.
发表于 2025-3-28 00:42:24 | 显示全部楼层
发表于 2025-3-28 05:43:30 | 显示全部楼层
发表于 2025-3-28 07:35:11 | 显示全部楼层
Heterogeneous Voltage Frequency Scaling of Data-Parallel Applications for Energy Saving on Homogeneogical cores in total. The cost and efficiency of the proposed pruning algorithm for selecting heterogeneous DVFS configurations against the brute-force search are verified and compared experimentally.
发表于 2025-3-28 12:35:39 | 显示全部楼层
A Novel Algorithm for Bi-objective Performance-Energy Optimization of Applications with Continuous Papplication employing five heterogeneous processors that include two Intel multicore CPUs, an Nvidia K40c GPU, an Nvidia P100 PCIe GPU, and an Intel Xeon Phi. Based on our experiments, a dynamic energy saving of 17% is gained while tolerating a performance degradation of 5% (a saving of 106 J for an execution time increase of 0.05 s).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 20:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表