找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Euro-Par 2020: Parallel Processing; 26th International C Maciej Malawski,Krzysztof Rzadca Conference proceedings 2020 Springer Nature Switz

[复制链接]
楼主: 闪烁
发表于 2025-3-25 05:25:30 | 显示全部楼层
Optimal GPU-CPU Offloading Strategies for Deep Neural Network Trainingnd requires to determine which activations should be offloaded and when these transfers should take place. We prove that this problem is NP-complete in the strong sense, and propose two heuristics based on relaxations of the problem. We then conduct a thorough experimental evaluation of standard deep neural networks.
发表于 2025-3-25 10:20:19 | 显示全部楼层
发表于 2025-3-25 12:20:57 | 显示全部楼层
发表于 2025-3-25 19:53:56 | 显示全部楼层
发表于 2025-3-25 22:04:01 | 显示全部楼层
发表于 2025-3-26 01:25:14 | 显示全部楼层
发表于 2025-3-26 07:13:35 | 显示全部楼层
https://doi.org/10.1007/978-3-642-94213-6e the others are throttled. The overall execution performance is improved. Employing the . on diverse HPC benchmarks and real-world applications, we observed that the hardware settings adjusted by . have near-optimal results compared to the optimal setting of a static approach. The achieved speedup in our work amounts to up to 6.3%.
发表于 2025-3-26 09:46:29 | 显示全部楼层
Die Revision der Neurosenfrage,underlying parallel programming model and implemented our optimization framework in the LLVM toolchain. We evaluated it with ten benchmarks and obtained a geometric speedup of 2.3., and reduced on average 50% of the total bytes transferred between the host and GPU.
发表于 2025-3-26 13:02:57 | 显示全部楼层
Marc Oliver Opresnik,Oguz Yilmazayers from state-of-the-art CNNs on two different GPU platforms, NVIDIA TITAN Xp and Tesla P4. The experiments show that the average speedup is 2.02 . on representative structures of CNNs, and 1.57. on end-to-end inference of SqueezeNet.
发表于 2025-3-26 20:31:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-3 22:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表