找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Euclidean Distance Matrices and Their Applications in Rigidity Theory; Abdo Y. Alfakih Book 2018 Springer Nature Switzerland AG 2018 Eucli

[复制链接]
楼主: 全体
发表于 2025-3-23 13:14:41 | 显示全部楼层
https://doi.org/10.1007/978-0-387-71167-6roblem reduces to a purely combinatorial one depending only on graph .. The literature on the theory of local and infinitesimal rigidities is vast [., ., ., ., .]. However, in this chapter, we confine ourselves to discussing only the basic results and the results pertaining to EDMs.
发表于 2025-3-23 13:51:55 | 显示全部楼层
发表于 2025-3-23 19:09:37 | 显示全部楼层
The Eigenvalues of EDMs,lated to eigenvalues such as: a method for constructing nonisomorphic cospectral EDMs; the connection between EDMs, graphs, and combinatorial designs; EDMs with exactly two or three distinct eigenvalues and the EDM inverse eigenvalue problem.
发表于 2025-3-24 01:22:20 | 显示全部楼层
发表于 2025-3-24 03:23:28 | 显示全部楼层
发表于 2025-3-24 09:38:48 | 显示全部楼层
Euclidean Distance Matrices and Their Applications in Rigidity Theory978-3-319-97846-8
发表于 2025-3-24 11:06:36 | 显示全部楼层
发表于 2025-3-24 16:43:53 | 显示全部楼层
发表于 2025-3-24 23:00:41 | 显示全部楼层
Stephen J. Paddison,Keith S. Promislowf the most pertinent concepts and results in the theories of vector spaces, matrices, convexity, and graphs. Proofs of several of these results are included to make this chapter as self-contained as possible.
发表于 2025-3-25 01:16:00 | 显示全部楼层
Jinsong Han,Wei Xi,Kun Zhao,Zhiping Jiang EDMs. The chapter also discusses methods to construct new EDMs from old ones, and presents some EDM necessary and sufficient inequalities. It also provides a discussion of the Cayley–Menger matrix and Schoenberg Transformations.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 05:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表