找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Estimating Ore Grade Using Evolutionary Machine Learning Models; Mohammad Ehteram,Zohreh Sheikh Khozani,Maliheh Abb Book 2023 The Editor(s

[复制链接]
楼主: EXTRA
发表于 2025-3-23 12:17:57 | 显示全部楼层
发表于 2025-3-23 16:00:56 | 显示全部楼层
Faheema Khan,Khalid Rehman Hakeemt tasks. The performance of ANN models depends on the parameters of ANNs. Different ANN models are compared for estimating ore grade in this chapter. A modeler can choose the best ANN model by understanding its different features.
发表于 2025-3-23 22:02:14 | 显示全部楼层
发表于 2025-3-23 23:29:26 | 显示全部楼层
发表于 2025-3-24 04:40:54 | 显示全部楼层
发表于 2025-3-24 07:28:39 | 显示全部楼层
https://doi.org/10.1007/978-94-011-1490-5 this chapter suggests solutions to improve the accuracy of models for estimating ore grades. This chapter examines the drawbacks of different models. The chapter indicated that ore grade could be accurately estimated using soft computing models.
发表于 2025-3-24 12:45:53 | 显示全部楼层
Abazar Rajabi,Eric Schmieder Oberxplains the structure of different optimization algorithms for solving optimization problems. The advantages and disadvantages of different optimization algorithms are explained in this chapter. The optimization algorithms use advanced operators to adjust the ANN parameters.
发表于 2025-3-24 17:31:41 | 显示全部楼层
Annie Ruttledge,Bhagirath S. Chauhans 8.12, 8.25, 8.57, and 8.98 for the RBFNN-SSO, RBFNN-SCA, RBFNN-FFA, and RBFNN. At the testing level, the IMM decreased the MAE of the RBFNN-SSO, RBFNN-SCA, RBFNN-FFA, and RFBNN by 0.9, 8.5, 17, and 20%, respectively. The results indicated that the IMM model was reliable for estimating ore grade.
发表于 2025-3-24 21:49:51 | 显示全部楼层
Crop Rotation Defeats Pests and Weeds,FA, GMDH-PSO, GMDH-GA, and GMDH were 4.55, 5.12, 5.54, 5.89, and 5.91. At the testing level, the GMDH-SSA decreased the MAE of the GMDH-SCA, GMDH-FFA, GMDH-PSO, GMDH-GA, and GMDH by 4.7, 14, 16, and 17%, respectively. The optimized GMDH models had a high potential for estimating iron ore grade.
发表于 2025-3-25 01:03:08 | 显示全部楼层
Neeta Sharma,Swati Sharma,Basant Prabhaabilities for estimating ore grades. This chapter indicated that the model parameters and input parameters are the uncertainty resources in the modeling process. Also, the optimization algorithms improved the accuracy of ANN models for estimating ore grade.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-11 06:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表