用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ergodic Theory, Open Dynamics, and Coherent Structures; Wael Bahsoun,Christopher Bose,Gary Froyland Conference proceedings 2014 Springer S

[复制链接]
楼主: CRUST
发表于 2025-3-25 04:07:36 | 显示全部楼层
Conclusion: In the Spirit of Sankofa,For piecewise real analytic expanding Markov maps with Markov hole, it is shown that the escape rate and corresponding escape measure can be rapidly approximated using periodic points.
发表于 2025-3-25 09:55:49 | 显示全部楼层
发表于 2025-3-25 13:24:11 | 显示全部楼层
https://doi.org/10.1057/978-1-137-59077-0We consider open systems generated from one-dimensional maps that admit a finite Markov partition and use the recently developed theory of isospectral graph transformations to estimate a system’s survival probabilities. We show that these estimates are better than those obtained through a more direct approach.
发表于 2025-3-25 16:15:34 | 显示全部楼层
https://doi.org/10.1057/9780230623200In the framework of abstract ergodic probability-preserving transformations, we prove that the limiting return-time statistics and hitting-time statistics persist if we pass from the original system to a first-return map and vice versa.
发表于 2025-3-25 23:58:01 | 显示全部楼层
发表于 2025-3-26 02:48:53 | 显示全部楼层
Periodic Points, Escape Rates and Escape Measures,For piecewise real analytic expanding Markov maps with Markov hole, it is shown that the escape rate and corresponding escape measure can be rapidly approximated using periodic points.
发表于 2025-3-26 04:57:51 | 显示全部楼层
Lebesgue Ergodicity of a Dissipative Subtractive Algorithm,We prove Lebesgue ergodicity and exactness of a certain dissipative 2-dimensional subtractive algorithm, completing a partial answer by Fokkink et al. to a question by Schweiger. This implies for Meester’s subtractive algorithm in dimension . that there are . − 2 parameters which completely determine the ergodic decomposition of Lebesgue measure.
发表于 2025-3-26 11:33:23 | 显示全部楼层
发表于 2025-3-26 15:22:55 | 显示全部楼层
发表于 2025-3-26 19:05:07 | 显示全部楼层
Ergodic Theory, Open Dynamics, and Coherent Structures
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-3 00:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表